Effect of human β-Globin second intron on transient gene expression in mammalian cell lines

Authors

  • Kevin Kumar Vijayakumar Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu
  • Humera Khathun Abdul Hameed Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu
  • Shakila Harshavardhan Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu

DOI:

https://doi.org/10.18006/2023.11(4).663.670

Keywords:

Human β-Globin (hBG) second intron, Gene therapy, Intron-Mediated Enhancement (IME), Nonsense-Mediated Decay (NMD), pVAX

Abstract

Exogenous protein expression in mammalian cells is necessary to produce therapeutic proteins and modern medical applications like developing DNA vaccines and gene therapy. This study examines the human-Globin (hBG) second intron's capacity for intron-mediated enhancement (IME) in various mammalian cell lines. Our study's main aim is to investigate the effect of the incorporation and arrangement of the second intron of the human Beta-globin gene into the pVAX-1 expression cassette on improving the expression of foreign genes. Two plasmids were constructed, one with the hBG second intron positioned upstream and the other downstream in the expression cassette. EGFP expression was evaluated at the mRNA and protein levels after transfection using Lipofectamine 2000 using One-way ANOVA analysis. Results showed that the pVAX-1 harbouring the hBG second intron did not lead to enhanced transient EGFP expression and did not exhibit Intron Mediated Enhancement (IME) in tested mammalian cell lines. Further investigations are necessary to understand factors contributing to the lack of enhancement and explore alternative intron options for optimizing foreign gene expression in cell lines.

Author Biographies

Kevin Kumar Vijayakumar, Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu

 

 

 

 

Humera Khathun Abdul Hameed, Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu

 

 

 

Shakila Harshavardhan, Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu

 

 

References

Agarwal, N., & Ansari, A. (2016). Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality. PLoS Genet, 12(5), e1006047. doi:10.1371/journal.pgen.1006047 DOI: https://doi.org/10.1371/journal.pgen.1006047

Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B., & Sharp, P. A. (2013). Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature, 499(7458), 360-363. doi:10.1038/nature12349 DOI: https://doi.org/10.1038/nature12349

Barrett, L. W., Fletcher, S., & Wilton, S. D. (2012). Regulation of eukaryotic gene expression by the untranslated gene regions and other noncoding elements. Cellular and Molecular Life Sciences, 69(21), 3613-3634. doi:10.1007/s00018-012-0990-9 DOI: https://doi.org/10.1007/s00018-012-0990-9

Bartlett, J. G., Snape, J. W., & Harwood, W. A. (2009). Intron-mediated enhancement as a method for increasing transgene expression levels in barley. Plant Biotechnology Journal, 7(9), 856-866. doi:https://doi.org/10.1111/j.1467-7652.2009.00448.x DOI: https://doi.org/10.1111/j.1467-7652.2009.00448.x

Bieberstein, N. I., Carrillo Oesterreich, F., Straube, K., & Neugebauer, K. M. (2012). First exon length controls active chromatin signatures and transcription. Cell reports, 2(1), 62-68. doi:10.1016/j.celrep.2012.05.019 DOI: https://doi.org/10.1016/j.celrep.2012.05.019

Bonnet, A., & Palancade, B. (2015). Intron or no intron: a matter for nuclear pore complexes. Nucleus, 6(6), 455-461. doi:10.1080/19491034.2015.1116660 DOI: https://doi.org/10.1080/19491034.2015.1116660

Carron, J., Torricelli, C., Silva, J. K., de Oliveira Coser, L., Lima, C. S. P., & Lourenco, G. J. (2021). Intronic variants of MITF (rs7623610) and CREB1 (rs10932201) genes may enhance splicing efficiency in human melanoma cell line. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 823, 111763. DOI: https://doi.org/10.1016/j.mrfmmm.2021.111763

Dou, Y., Lin, Y., Wang, T. Y., Wang, X. Y., Jia, Y. l., & Zhao, C. P. (2021). The CAG promoter maintains high‐level transgene expression in HEK293 cells. FEBS Open Bio, 11(1), 95-104. DOI: https://doi.org/10.1002/2211-5463.13029

Engreitz, J. M., Sirokman, K., McDonel, P., Shishkin, A. A., Surka, C., et al. (2014). RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell, 159(1), 188–199. https://doi.org/10.1016/ j.cell.2014.08.018 DOI: https://doi.org/10.1016/j.cell.2014.08.018

Furger, A., O'Sullivan, J. M., Binnie, A., Lee, B. A., & Proudfoot, N. J. (2002). Promoter proximal splice sites enhance transcription. Genes & development, 16(21), 2792-2799. doi:10.1101/gad.983602 DOI: https://doi.org/10.1101/gad.983602

Gallegos, J. E., & Rose, A. B. (2015). The enduring mystery of intron-mediated enhancement. Plant Science, 237, 8-15. doi:10.1016/j.plantsci.2015.04.017 DOI: https://doi.org/10.1016/j.plantsci.2015.04.017

Grose, C., Putman, Z., & Esposito, D. (2021). A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells. Protein Expression and Purification, 186, 105924. DOI: https://doi.org/10.1016/j.pep.2021.105924

Haddad-Mashadrizeh, A., Zomorodipour, A., Izadpanah, M., Sam, M. R., Ataei, F., et al. (2009). A systematic study of the function of the human beta-globin introns on the expression of the human coagulation factor IX in cultured Chinese hamster ovary cells. The journal of gene medicine, 11(10), 941–950. https://doi.org/10.1002/jgm.1367 DOI: https://doi.org/10.1002/jgm.1367

Kang, M., Kim, S., Lee, S., Lee, Y., Lee, J.H., Shin, H., & Kim, Y.S. (2005). Human β-globin second intron highly enhances expression of foreign genes from murine cytomegalovirus immediate-early promoter. Journal of Microbiology and Biotechnology, 15 (3), 544-550..

Laxa, M. (2017). Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01977 DOI: https://doi.org/10.3389/fpls.2016.01977

Le Hir, H., Izaurralde, E., Maquat, L. E., & Moore, M. J. (2000). The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. The EMBO journal, 19(24), 6860-6869. doi:10.1093/emboj/19.24.6860 DOI: https://doi.org/10.1093/emboj/19.24.6860

Lejeune, F. (2022). Nonsense-mediated mRNA decay, a finely regulated mechanism. Biomedicines, 10(1), 141. DOI: https://doi.org/10.3390/biomedicines10010141

Misra, A., & Green, M. R. (2016). From polyadenylation to splicing: Dual role for mRNA 3' end formation factors. RNA biology, 13(3), 259-264. doi:10.1080/15476286.2015.1112490 DOI: https://doi.org/10.1080/15476286.2015.1112490

Noe Gonzalez, M., Blears, D., & Svejstrup, J. Q. (2021). Causes and consequences of RNA polymerase II stalling during transcript elongation. Nature reviews Molecular cell biology, 22(1), 3-21. DOI: https://doi.org/10.1038/s41580-020-00308-8

Pereverzev, A. P., Markina, N. M., et al. (2014). [Intron 2 of human beta-globin in 3'-untranslated region enhances expression of chimeric genes]. Russian Journal of Bioorganic Chemistry, 40(3), 293-296. doi:10.1134/s106816201403011x DOI: https://doi.org/10.1134/S106816201403011X

Samadder, P., Sivamani, E., Lu, J., Li, X., & Qu, R. (2008). Transcriptional and post-transcriptional enhancement of gene expression by the 5′ UTR intron of rice rubi3 gene in transgenic rice cells. Molecular Genetics and Genomics, 279, 429-439. DOI: https://doi.org/10.1007/s00438-008-0323-8

Schlautmann, L. P., & Gehring, N. H. (2020). A Day in the Life of the Exon Junction Complex. Biomolecules, 10(6), 866. DOI: https://doi.org/10.3390/biom10060866

Subbarayan, R., Murugan Girija, D., & Ranga Rao, S. (2018). Gingival spheroids possess multilineage differentiation potential. Journal of Cellular Physiology, 233(3), 1952-1958. doi:https://doi.org/10.1002/jcp.25894 DOI: https://doi.org/10.1002/jcp.25894

Tan, E., Chin, C. S. H., Lim, Z. F. S., & Ng, S. K. (2021). HEK293 cell line as a platform to produce recombinant proteins and viral vectors. Frontiers in bioengineering and biotechnology, 9, 796991. DOI: https://doi.org/10.3389/fbioe.2021.796991

Vijayakumar, K. K., Rajandran, A., Lumumba, S., & Harshavardhan, S. (2023). In silico characterization of Melittin from Apis cerana indica and evaluation of melittin intron for transgene expression in mammalian cells. Journal of Applied Biology and Biotechnology, 11(3), 153-159. DOI: https://doi.org/10.7324/JABB.2023.101771

Wang, W., Jia, Y. L., Li, Y. C., Jing, C. Q., Guo, X., et al. (2017). Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Scientific reports, 7(1), 10416. https://doi.org/10.1038/s41598-017-10966-y. DOI: https://doi.org/10.1038/s41598-017-10966-y

Watts, A., Sankaranarayanan, S., Watts, A., & Raipuria, R. K. (2021). Optimizing protein expression in heterologous system: strategies and tools. Meta Gene, 29, 100899. DOI: https://doi.org/10.1016/j.mgene.2021.100899

Downloads

Published

2023-08-31

How to Cite

Vijayakumar, K. K., Hameed, H. K. A., & Harshavardhan, S. (2023). Effect of human β-Globin second intron on transient gene expression in mammalian cell lines. Journal of Experimental Biology and Agricultural Sciences, 11(4), 663–670. https://doi.org/10.18006/2023.11(4).663.670

Issue

Section

RESEARCH ARTICLES

Categories