Impact of the COVID-19 Pandemic on tuberculosis management in India: A Brief Overview

Authors

DOI:

https://doi.org/10.18006/2023.11(3).534.541

Keywords:

Tuberculosis, COVID-19, Emerging viral infections, Pandemics

Abstract

Chronicles suggests that emerging and re-emerging viral infections disrupting the normal lifestyle of humankind, whether in the form of HIV, Ebola, Influenza, Nepah, or the current SARS-CoV-2 pandemic. Such viral infections disrupt the healthcare system along with the prevention and control of epidemics and pandemics, resulting in an increased burden of such diseases in the post-pandemic period. Tuberculosis (TB) routine services are interfered with by severe lockdowns due to the new COVID-19 virus. This article tried to measure the long-term epidemiological effects of such interruptions on TB prevalence in high-burden countries. The participating facilities performed a comprehensive review based on modifications to the care of TB patients during the COVID-19 pandemic. Retrospectively, clinical factors and household contact information were collected from a literature survey. Researchers looked at numerous strategies over the following five years to see whether they might lessen the effects on TB incidence and death. Present comprehensive literature was collected and analyzed using suitable keywords such as "COVID-19," "Pandemics," "Tuberculosis," and "India" during the current COVID-19 pandemic to investigate the influence of COVID-19 on tuberculosis management. The present article looks at the effects of the breaks in the delivery of TB care in hospital and primary care settings. Lockdown, social isolation, measures to prevent viral transmission, and public health guidelines impacted tuberculosis care. The present study revealed that the COVID-19 pandemic has adversely affected numerous TB prevention, monitoring, and treatment programs. Still, these adverse effects are diminished by the prompt restoration of TB services and the application of particular therapies as soon as restrictions are lifted.

Author Biographies

Sheetal Rajput, Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India

 

 

Tanvi Chaturvedi, Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India

 

 

References

Ahn, D. G., Shin, H. J., Kim, M. H., Lee, S., et al. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of microbiology and Biotechnology, 30(3), 313-324. DOI: https://doi.org/10.4014/jmb.2003.03011

Anderson, R. M., Heesterbeek, H., Klinkenberg, D., & Hollingsworth, T. D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The lancet, 395(10228), 931-934. DOI: https://doi.org/10.1016/S0140-6736(20)30567-5

Arinaminpathy, N., & Dye, C. (2010). Health in financial crises: economic recession and tuberculosis in Central and Eastern Europe. Journal of the Royal Society Interface, 7(52), 1559-1569. DOI: https://doi.org/10.1098/rsif.2010.0072

Budinger, G. R. S., Misharin, A. V., Ridge, K. M., Singer, B. D., & Wunderink, R. G. (2021). Distinctive features of severe SARS-CoV-2 pneumonia. The Journal of clinical investigation, 131(14), e149412. https://doi.org/10.1172/JCI149412. DOI: https://doi.org/10.1172/JCI149412

Buonsenso, D., Iodice, F., Biala, J. S., & Goletti, D. (2021). COVID-19 effects on tuberculosis care in Sierra Leone. Pulmonology, 27(1), 67. DOI: https://doi.org/10.1016/j.pulmoe.2020.05.013

Cantini, F., Goletti, D., Petrone, L., Najafi Fard, S., Niccoli, L., & Foti, R. (2020). Immune therapy, or antiviral therapy, or both for COVID-19: a systematic review. Drugs, 80, 1929-1946. DOI: https://doi.org/10.1007/s40265-020-01421-w

Chen, N., Zhou, M., Dong, X., Qu, J., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The lancet, 395(10223), 507-513. DOI: https://doi.org/10.1016/S0140-6736(20)30211-7

Coker, R. J. (2004). Multidrug-resistant tuberculosis: public health challenges. Tropical Medicine and International Health, 9(1), 25-40. DOI: https://doi.org/10.1046/j.1365-3156.2003.01156.x

Crisan-Dabija, R., Grigorescu, C., Pavel, C. A., Artene, B., Popa, I. V., Cernomaz, A., & Burlacu, A. (2020). Tuberculosis and COVID-19: lessons from the past viral outbreaks and possible future outcomes. Canadian respiratory journal, 2020, 1401053. DOI: https://doi.org/10.1101/2020.04.28.20082917

Curtis, N., Sparrow, A., Ghebreyesus, T. A., & Netea, M. G. (2020). Considering BCG vaccination to reduce the impact of COVID-19. The Lancet, 395(10236), 1545-1546. DOI: https://doi.org/10.1016/S0140-6736(20)31025-4

Dhama, K., Chandran, D., Chopra, H., Islam, M. A., et al. (2022). SARS-CoV-2 emerging Omicron subvariants with a special focus on BF. 7 and XBB. 1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic. Journal of Experimental Biology and Agricultural Sciences, 10, 1215-1221. DOI: https://doi.org/10.18006/2022.10(6).1215.1221

Dhama, K., Khan, S., Tiwari, R., Sircar, S., et al. (2020). Coronavirus disease 2019–COVID-19. Clinical microbiology reviews, 33(4), pp.e00028-20. DOI: https://doi.org/10.1128/CMR.00028-20

Dhamnetiya, D., Patel, P., Jha, R. P., Shri, N., Singh, M., & Bhattacharyya, K. (2021). Trends in incidence and mortality of tuberculosis in India over past three decades: a joinpoint and age–period–cohort analysis. BMC pulmonary medicine, 21(1), 1-14. DOI: https://doi.org/10.1186/s12890-021-01740-y

Dheda, K., Perumal, T., Moultrie, H., Perumal, R., et al. (2022). The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions. The Lancet Respiratory Medicine, 10(6), 603-622. DOI: https://doi.org/10.1016/S2213-2600(22)00092-3

Flaxman, S., Mishra, S., Gandy, A., Unwin, H., et al. (2020). Report 13: Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Nature, 584(7820):257-261.

Garg, R., Khurana, A. K., & Khadanga, S. (2022). The Monster Tuberculosis in India, Impending Epidemic in COVID-19 Era. Journal of Laboratory Physicians, 14(01), 099-100. DOI: https://doi.org/10.1055/s-0041-1736479

Golli, A. L., Niţu, M. F., Turcu, F., Popescu, M., Ciobanu-Mitrache, L., & Olteanu, M. (2019). Tuberculosis remains a public health problem in Romania. The International Journal of Tuberculosis and Lung Disease, 23(2), 226-231. DOI: https://doi.org/10.5588/ijtld.18.0270

Guidelines for Programmatic Management of Tuberculosis Preventive Treatment in India, 2021. https://tbcindia.gov.in.

Hogan, A.B., Jewell, B.L., Sherrard-Smith, E., Vesga, J.F., et al. (2020). Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: a modelling study. The Lancet global health, 8(9), e1132-e1141. DOI: https://doi.org/10.1016/S2214-109X(20)30288-6

Jain, V. K., Iyengar, K. P., Samy, D. A., & Vaishya, R. (2020). Tuberculosis in the era of COVID-19 in India. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 1439-1443. DOI: https://doi.org/10.1016/j.dsx.2020.07.034

Lancet, T. (2020). India under COVID-19 lockdown. Lancet (London, England), 395(10233), 1315. DOI: https://doi.org/10.1016/S0140-6736(20)30938-7

Lobo, N., Brooks, N. A., Zlotta, A. R., Cirillo, J. D., et al. (2021). 100 years of Bacillus Calmette–Guerin immunotherapy: from cattle to COVID-19. Nature Reviews Urology, 18(10), 611-622. DOI: https://doi.org/10.1038/s41585-021-00481-1

Migliori, G. B., Thong, P. M., Akkerman, O., Alffenaar, J. W., et al. (2020). Worldwide effects of coronavirus disease pandemic on tuberculosis services. Emerging infectious diseases, 26(11), 2709. DOI: https://doi.org/10.3201/eid2611.203163

Mina, M. J., Parker, R., & Larremore, D. B. (2020). Rethinking Covid-19 test sensitivity—a strategy for containment. New England Journal of Medicine, 383(22), e120. DOI: https://doi.org/10.1056/NEJMp2025631

Motta, I., Centis, R., D’Ambrosio, L., García-García, J. M., et al. (2020). Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology, 26(4), 233-240. DOI: https://doi.org/10.1016/j.pulmoe.2020.05.002

Murugesan, K., Jagannathan, P., Pham, T. D., Pandey, S., et al. (2021). Interferon-γ release assay for accurate detection of severe acute respiratory syndrome coronavirus 2 T-cell response. Clinical Infectious Diseases, 73(9), e3130-e3132. DOI: https://doi.org/10.1093/cid/ciaa1537

Narayanan, D.K.L., Djearamane, S., Fuloria, S., Kayarohanam, S., et al. (2022). A review on DNA vaccines in pre-clinical trials against SARS-CoV-2. Journal of Experimental Biology and Agricultural Sciences, 10(3), 487-493. DOI: https://doi.org/10.18006/2022.10(3).487.493

Noymer, A. (2011). The 1918 influenza pandemic hastened the decline of tuberculosis in the United States: an age, period, cohort analysis. Vaccine, 29, B38-B41. DOI: https://doi.org/10.1016/j.vaccine.2011.02.053

Oliva, J., & Terrier, O. (2021). Viral and bacterial coinfections in the lungs: dangerous liaisons. Viruses, 13(9), 1725. DOI: https://doi.org/10.3390/v13091725

Pai, M., Kasaeva, T., & Swaminathan, S. (2022). Covid-19's devastating effect on tuberculosis care-A path to recovery. New England Journal of Medicine, 386(16), 1490-1493. DOI: https://doi.org/10.1056/NEJMp2118145

Parpia, A. S., Ndeffo-Mbah, M. L., Wenzel, N. S., & Galvani, A. P. (2016). Effects of response to 2014–2015 Ebola outbreak on deaths from malaria, HIV/AIDS, and tuberculosis, West Africa. Emerging infectious diseases, 22(3), 433. DOI: https://doi.org/10.3201/eid2203.150977

Petrone, L., Petruccioli, E., Vanini, V., Cuzzi, G., et al. (2021). A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients. Clinical microbiology and infection, 27(2), 286-e7. DOI: https://doi.org/10.1016/j.cmi.2020.09.051

Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., et al. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 5(5), e261-e270. DOI: https://doi.org/10.1101/2020.03.09.20033050

Redford, P. S., Mayer-Barber, K. D., McNab, F. W., Stavropoulos, E., Wack, A., Sher, A., & O'Garra, A. (2014). Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon Receptor–Dependent pathway. The Journal of infectious diseases, 209(2), 270-274. DOI: https://doi.org/10.1093/infdis/jit424

Santosh Kumar, R., & Pushp, D. (2022). Tuberculosis: Stop It with Effective Treatment. Asian Journal of Medicine and Health, 20(5), 34-45. DOI: https://doi.org/10.9734/ajmah/2022/v20i530463

Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Current treatment protocol for COVID-19 in India. Sensors International, 1, 100013. DOI: https://doi.org/10.1016/j.sintl.2020.100013

Simoes, D., Ehsani, S., Stanojevic, M., Shubladze, N., et al. (2022). Integrated use of laboratory services for multiple infectious diseases in the WHO European Region during the COVID-19 pandemic and beyond. Eurosurveillance, 27(29), 2100930. DOI: https://doi.org/10.2807/1560-7917.ES.2022.27.29.2100930

Small, C. L., Shaler, C. R., McCormick, S., Jeyanathan, M., et al. (2010). Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. The Journal of Immunology, 184(4), 2048-2056. DOI: https://doi.org/10.4049/jimmunol.0902772

Suarez, I., Fünger, S. M., Kröger, S., Rademacher, J., Fätkenheuer, G., & Rybniker, J. (2019). The diagnosis and treatment of tuberculosis. Deutsches Aerzteblatt International, 116(43), 729-735. DOI: https://doi.org/10.3238/arztebl.2019.0729

Tadolini, M., Codecasa, L. R., García-García, J. M., Blanc, F. X., Borisov, S., Alffenaar, J. W., & Migliori, G. B. (2020). Active tuberculosis, sequelae and COVID-19 coinfection: first cohort of 49 cases. European Respiratory Journal, 56(1), 2001398. DOI: https://doi.org/10.1183/13993003.02328-2020

Visca, D., Ong, C.W.M., Tiberi, S., Centis, R., et al. (2021). Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology, 27(2), 151-165. DOI: https://doi.org/10.1016/j.pulmoe.2020.12.012

Walaza, S., Cohen, C., Tempia, S., Moyes, J., et al. (2020). Influenza and tuberculosis coinfection: A systematic review. Influenza and other respiratory viruses, 14(1), 77-91. DOI: https://doi.org/10.1111/irv.12670

Walker, P. G., White, M. T., Griffin, J. T., Reynolds, A., Ferguson, N. M., & Ghani, A. C. (2015). Malaria morbidity and mortality in

Ebola-affected countries caused by decreased healthcare capacity, and the potential effect of mitigation strategies: a modelling analysis. The Lancet Infectious Diseases, 15(7), 825-832. DOI: https://doi.org/10.1016/S1473-3099(15)70124-6

WHO Solidarity Trial Consortium. (2021). Repurposed antiviral drugs for Covid-19-interim WHO solidarity trial results. New England journal of medicine, 384(6), 497-511. DOI: https://doi.org/10.1056/NEJMoa2023184

Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. Jama, 323(13), 1239-1242. DOI: https://doi.org/10.1001/jama.2020.2648

Xu, Y., Wu, J., Liao, S., & Sun, Z. (2017). Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Annals of clinical microbiology and antimicrobials, 16(1), 1-13. DOI: https://doi.org/10.1186/s12941-017-0239-4

Zignol, M., Gemert, W. V., Falzon, D., Sismanidis, C., Glaziou, P., Floyd, K., & Raviglione, M. (2012). Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007-2010. Bulletin of the world Health Organization, 90, 111-119. DOI: https://doi.org/10.2471/BLT.11.092585

Downloads

Published

2023-06-30

How to Cite

Rajput, S., Gupta, S., & Chaturvedi, T. (2023). Impact of the COVID-19 Pandemic on tuberculosis management in India: A Brief Overview. Journal of Experimental Biology and Agricultural Sciences, 11(3), 534–541. https://doi.org/10.18006/2023.11(3).534.541

Issue

Section

REVIEW ARTICLES