Argania spinosa Leaves and Branches: Antiaggregant, Anticoagulant, Antioxidant Activities and Bioactive Compounds Quantification
DOI:
https://doi.org/10.18006/2023.11(4).650.662Keywords:
Argania spinosa, Aggregation, Coagulation, Antioxidant activity, Oriental region of MoroccoAbstract
Thrombocytes, also known as platelets, are crucial in maintaining the balance between blood clotting. Platelet hyperactivity and oxidative stress are the primary factors contributing to cardiovascular complications. Antithrombotic therapy remains one of the most effective treatments, but various potential side effects hinder its effectiveness, including the risk of haemorrhage. Intense research has been conducted on medicinal plants to discover the natural antithrombotic compounds. Argania spinosa, commonly known as the argan tree or argan oil tree, is a native species of southwestern Morocco. This study evaluated the primary and secondary hemostasis and antioxidant activity of leaf and branch aqueous extracts of A. spinosa and also assessed the phytochemical composition of these extracts. Platelet aggregation assay was performed using washed platelets stimulated with thrombin. For plasmatic coagulation, activated partial thromboplastin time and prothrombin time were measured using the poor plasma method. Bleeding time was evaluated by inducing bleeding at the tip of a mouse tail. The antioxidant activity of the extracts was determined through the DPPH, β-carotene, and FRAP methods. The presence or absence of the secondary metabolites was carried out with the help of specific reagents, and the quantitative analysis was carried out using spectrophotometric and colorimetric methods. The study results revealed the presence of phenols, total flavonoids, cardiac glycosides, tannins, and coumarins type of secondary metabolites in both types of aqueous extracts and a higher concentration of these was recorded in the leaves extracts. Both aqueous extracts significantly reduced in vitro thrombin-induced platelet aggregation, extended tail bleeding time, prolonged activated partial thromboplastin and prothrombin time and exhibited remarkable antioxidant activity. The leaf extract of A. spinosa exerts significant effects against thrombotic manifestations and could be a promising source of new antithrombotic compounds.
References
Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21(2), 143-152. DOI: https://doi.org/10.1016/j.jsps.2012.05.002
Amirou, A., Bnouham, M., Legssyer, A., Ziyyat, A., Aziz, M., Berrabah, M., & Mekhfi, H. (2018). Effects of Juglans regia Root Bark Extract on Platelet Aggregation, Bleeding Time, and Plasmatic Coagulation: In Vitro and Ex Vivo Experiments. Evidence-based complementary and alternative medicine : eCAM, 2018, 7313517. https://doi.org/10.1155/2018/7313517. DOI: https://doi.org/10.1155/2018/7313517
Amirou, A., Legssyer, A., Ziyyat, A., Mohammed, A., Bnouham, M., et al. (2022). Antithrombotic activity of flavonoid fractions of Juglans regia root bark through inhibiting platelet aggregation and plasmatic coagulation. Arabian Journal of medicinal and Aromatic Plants, 8(3), 94-114.
Awad, A., Smith, A., & Fink, C. (2001). Plant sterols regulate rat vascular smooth muscle cell growth and prostacyclin release in culture. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 64(6), 323-330. DOI: https://doi.org/10.1054/plef.2001.0273
Bekkouch, O., Harnafi, M., Touiss, I., Khatib, S., Harnafi, H., Alem, C., & Amrani, S. (2019). In Vitro Antioxidant and In Vivo Lipid-Lowering Properties of Zingiber officinale Crude Aqueous Extract and Methanolic Fraction: A Follow-Up Study. Evidence-Based Complementary and Alternative Medicine : eCAM, 2019, 9734390. https://doi.org/10.1155/2019/9734390 DOI: https://doi.org/10.1155/2019/9734390
Ben Mansour, R., Ben Slema, H., Falleh, H., Tounsi, M., Kechebar, M. S. A., Ksouri, R., & Megdiche‐Ksouri, W. (2018). Phytochemical characteristics, antioxidant, and health properties of roasted and unroasted Algerian argan (Argania spinosa) oil. Journal of Food Biochemistry, 42(5), e12562. DOI: https://doi.org/10.1111/jfbc.12562
Berrougui, H., Ettaib, A., Gonzalez, M. H., De Sotomayor, M. A., Bennani-Kabchi, N., & Hmamouchi, M. (2003). Hypolipidemic and hypocholesterolemic effect of argan oil (Argania spinosa L.) in Meriones shawi rats. Journal of Ethnopharmacology, 89(1), 15-18. DOI: https://doi.org/10.1016/S0378-8741(03)00176-4
Bnouham, M., Bellahcen, S., Benalla, W., Legssyer, A., Ziyyat, A. & Mekhfi, H. (2008). Antidiabetic Activity Assessment of Argania spinosa Oil. Journal of Complementary and Integrative Medicine, 5(1). https://doi.org/10.2202/1553-3840.1180 DOI: https://doi.org/10.2202/1553-3840.1180
Bourhim, T., Villareal, M. O., Couderc, F., Hafidi, A., Isoda, H., & Gadhi, C. (2021). Melanogenesis promoting effect, antioxidant activity, and UPLC-ESI-HRMS characterization of phenolic compounds of argan leaves extract. Molecules, 26(2), 371. DOI: https://doi.org/10.3390/molecules26020371
Buvaneswari, K., Ramamoorthy, D., & Velanganni, J. (2011). Preliminary phytochemical and antimicrobial activity studies on the leaves of the Indian plant Thevetia neriifolia Juss. World Journal of Agricultural Sciences, 7(6), 659-666.
Charrouf, Z., & Guillaume, D. (1999). Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. Journal of Ethnopharmacology, 67(1), 7-14. DOI: https://doi.org/10.1016/S0378-8741(98)00228-1
Cherki, M., Berrougui, H., Drissi, A., Adlouni, A., & Khalil, A. (2006). Argan oil: which benefits on cardiovascular diseases? Pharmacological Research, 54(1), 1-5. DOI: https://doi.org/10.1016/j.phrs.2006.02.004
de la Rosa, L. A., Alvarez-Parrilla, E., & Shahidi, F. (2011). Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). Journal of Agricultural and Food Chemistry, 59(1), 152-162. DOI: https://doi.org/10.1021/jf1034306
Ebrahimi, F., Torbati, M., Mahmoudi, J., & Valizadeh, H. (2020). Medicinal plants as potential hemostatic agents. Journal of Pharmacy & Pharmaceutical Sciences, 23, 10-23. DOI: https://doi.org/10.18433/jpps30446
El Haouari, M., & Mekhfi, H. (2017). Antiplatelet aggregation effects of extracts from Arbutus unedo leaves. Plant Science Today, 4(2), 68-74. DOI: https://doi.org/10.14719/pst.2017.4.2.298
El Haouari, M., & Rosado, J. A. (2016). Medicinal plants with antiplatelet activity. Phytotherapy Research, 30(7), 1059-1071. DOI: https://doi.org/10.1002/ptr.5619
Faggio, C., Sureda, A., Morabito, S., Sanches-Silva, A., Mocan, A., Nabavi, S. F., & Nabavi, S. M. (2017). Flavonoids and platelet aggregation: A brief review. European Journal of Pharmacology, 807, 91-101. doi: 10.1016/j.ejphar.2017.04.009 DOI: https://doi.org/10.1016/j.ejphar.2017.04.009
Ferreira, M., Nunes, O., Fujimura, A., Pessoa, O., Lemos, T., & Viana, G. (1999). Inhibition of platelet activation by quinones isolated from Auxemma oncocalyx Taub. Research Communications in Molecular Pathology and Pharmacology, 106(1-2), 97-107.
Freedman, J. E., Parker III, C., Li, L., Perlman, J. A., Frei, B., et al. (2001). Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation, 103(23), 2792-2798. DOI: https://doi.org/10.1161/01.CIR.103.23.2792
Gadi, D., Bnouham, M., Aziz, M., Ziyyat, A., Legssyer, A., et al. (2009). Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats. Journal of Ethnopharmacology, 125, 170-174. doi: 10.1016/j.jep.2009.05.014 DOI: https://doi.org/10.1016/j.jep.2009.05.014
Guerrero, J., Lozano, M., Castillo, J., Benavente‐Garcia, O., Vicente, V., & Rivera, J. (2005). Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. Journal of Thrombosis and Haemostasis, 3(2), 369-376. DOI: https://doi.org/10.1111/j.1538-7836.2004.01099.x
Hagerman, A. E. (1988). Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology, 14(2), 453-461. doi: 10.1007/BF01013897 DOI: https://doi.org/10.1007/BF01013897
Hubbard, G. P., Wolffram, S., Lovegrove, J. A., & Gibbins, J. M. (2003). The role of polyphenolic compounds in the diet as inhibitors of platelet function. Proceedings of the Nutrition Society, 62(2), 469-478. DOI: https://doi.org/10.1079/PNS2003253
Jesus, R. S., Piana, M., Freitas, R. B., Brum, T. F., Alves, C. F., et al. (2018). In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian Journal of Microbiology, 49, 296-302. DOI: https://doi.org/10.1016/j.bjm.2017.02.012
Kim, D.W., Sapkota, K., Choi, J.H., Kim, Y.S., Kim, S., & Kim, S.J. (2013). Direct acting antithrombotic serine protease from brown seaweed Costaria costata. Process Biochemistry, 48(2), 340-350. DOI: https://doi.org/10.1016/j.procbio.2012.12.012
Kozłowska-Wojciechowska, M., Jastrzȩbska, M., Naruszewicz, M., & Foltyńska, A. (2003). Impact of margarine enriched with plant sterols on blood lipids, platelet function, and fibrinogen level in young men. Metabolism, 52(11), 1373-1378. DOI: https://doi.org/10.1016/S0026-0495(03)00286-5
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750 DOI: https://doi.org/10.1155/2013/162750
Landolfi, R., Mower, R. L., & Steiner, M. (1984). Modification of platelet function and arachidonic acid metabolism by bioflavonoids: structure-activity relations. Biochemical Pharmacology, 33(9), 1525-1530. DOI: https://doi.org/10.1016/0006-2952(84)90423-4
Li, T., Yuan, D., Yuan, J. (2020). Antithrombotic Drugs—Pharmacology and Perspectives. In: M. Wang (eds.) Coronary Artery Disease: Therapeutics and Drug Discovery. Advances in Experimental Medicine and Biology, vol 1177. Singapore Springer. DOI: https://doi.org/10.1007/978-981-15-2517-9_4. DOI: https://doi.org/10.1007/978-981-15-2517-9_4
Mekhfi, H., Belmekki, F., Ziyyat, A., Legssyer, A., Bnouham, M., & Aziz, M. (2012). Antithrombotic activity of argan oil: An in vivo experimental study. Nutrition, 28(9), 937-941. doi: 10.1016/j.nut.2011.11.032 DOI: https://doi.org/10.1016/j.nut.2011.11.032
Mekhfi, H., Gadi, D., Bnouham, M., Ziyyat, A., Legssyer, A., & Aziz, M. (2008). Effect of Argan Oil on Platelet Aggregation and Bleeding Time: A Beneficial Nutritional Property. Journal of Complementary and Integrative Medicine, 5(1). doi: 10.2202/1553-3840.1164 DOI: https://doi.org/10.2202/1553-3840.1164
Mekhfi, H., Haouari, M. E., Legssyer, A., Bnouham, M., Aziz, M., et al. (2004). Platelet anti-aggregant property of some Moroccan medicinal plants. Journal of Ethnopharmacology, 94(2-3), 317-322. doi: 10.1016/j.jep.2004.06.005 DOI: https://doi.org/10.1016/j.jep.2004.06.005
Mercolini, L., Protti, M., Saracino, M. A., Mandrone, M., Antognoni, F., & Poli, F. (2016). Analytical profiling of bioactive phenolic compounds in Argan (Argania spinosa) Leaves by Combined Microextraction by Packed Sorbent (MEPS) and LC‐DAD‐MS/MS. Phytochemical Analysis, 27(1), 41-49. DOI: https://doi.org/10.1002/pca.2585
Morel, O., Kessler, L., Ohlmann, P., & Bareiss, P. (2010). Diabetes and the platelet: toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis, 212(2), 367-376. DOI: https://doi.org/10.1016/j.atherosclerosis.2010.03.019
Moukal, A. (2004). L’arganier, Argania spinosa L. (skeels), usage thérapeutique, cosmétique et alimentaire. Phytotherapie, 2(5), 135-141. doi: 10.1007/s10298-004-0041-2 DOI: https://doi.org/10.1007/s10298-004-0041-2
Mruk, J. S., Webster, M. W., Heras, M., Reid, J. M., Grill, D. E., & Chesebro, J. H. (2000). Flavone-8-acetic acid (Flavonoid) profoundly reduces platelet-dependent thrombosis and vasoconstriction after deep arterial injury in vivo. Circulation, 101(3), 324-328. DOI: https://doi.org/10.1161/01.CIR.101.3.324
Mu, H., Battsetseg, B., Ito, T., Otani, S., Onishi, K., & Kurozawa, Y. (2010). Effects of Asian dust storm on health-related quality of life: a survey immediately after an Asian dust storm event in Mongolia. International Journal of Health Research, 3(2), 87-92. DOI: https://doi.org/10.4314/ijhr.v3i2.70272
Nardini, M., Natella, F., & Scaccini, C. (2007). Role of dietary polyphenols in platelet aggregation. A review of the supplementation studies. Platelets, 18(3), 224-243. doi: 10.1080/09537100601078083 DOI: https://doi.org/10.1080/09537100601078083
Nijveldt, R. J., Van Nood, E., Van Hoorn, D. E., Boelens, P. G., Van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4), 418-425. DOI: https://doi.org/10.1093/ajcn/74.4.418
Nurden, P., Dreyfus, M., Favier, R., Négrier, C., Schlégel, N., & Sie, P. (2007). Centre de référence des pathologies plaquettaires. Archives de Pédiatrie (Paris), 14(6), 679-682. DOI: https://doi.org/10.1016/j.arcped.2007.02.076
Pignatelli, P., Pulcinelli, F. M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P. P., & Violi, F. (2000). The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. The American Journal of Clinical Nutrition, 72(5), 1150-1155. DOI: https://doi.org/10.1093/ajcn/72.5.1150
Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523. DOI: https://doi.org/10.1016/j.fitote.2011.01.018
Raal, A., Meos, A., Hinrikus, T., Heinämäki, J., Romāne, E., et al. (2020). Dragendorff's reagent: Historical perspectives and current status of a versatile reagent introduced over 150 years ago at the University of Dorpat, Tartu, Estonia. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 75(7), 299-306.
Rai, V., Pai, V. R., Kedilaya, P., & Hegde, S. (2013). Preliminary phytochemical screening of members of Lamiaceae family: Leucas linifolia, Coleus aromaticus and Pogestemon patchouli. International Journal of Pharmaceutical Science Review and Research, 21(1), 131-137.
Rammal, H., Bouayed, J., Younos, C., & Soulimani, R. (2009). Notes ethnobotanique et phytopharmacologique d’Argania spinosa L. Phytotherapie, 7(3), 157-160. DOI: https://doi.org/10.1007/s10298-009-0386-7
Rand, M. L., Hennissen, A. A., & Hornstra, G. (1988). Effects of dietary palm oil on arterial thrombosis, platelet responses and platelet membrane fluidity in rats. Lipids, 23(11), 1019-1023. DOI: https://doi.org/10.1007/BF02535646
Rosendaal, F. R., & Raskob, G. E. (2014). On world thrombosis day. The Lancet, 9955(384), 1653-1654. DOI: https://doi.org/10.1016/S0140-6736(14)61652-4
Sayari, N., Balti, R., Mansour, M. B., Amor, I. B., Graiet, I., Gargouri, J., & Bougatef, A. (2016). Anticoagulant properties and cytotoxic effect against HCT116 human colon cell line of sulfated glycosaminoglycans isolated from the Norway lobster (Nephrops norvegicus) shell. Biomedicine & Pharmacotherapy, 80, 322-330. DOI: https://doi.org/10.1016/j.biopha.2016.03.027
Sheu, J.R., Hsiao, G., Chou, P.H., Shen, M.Y., & Chou, D.-S. (2004). Mechanisms involved in the antiplatelet activity of rutin, a glycoside of the flavonol quercetin, in human platelets. Journal of Agricultural and Food Chemistry, 52(14), 4414-4418. DOI: https://doi.org/10.1021/jf040059f
Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., & Polissiou, M. (2005). Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90(3), 333-340. DOI: https://doi.org/10.1016/j.foodchem.2003.09.013
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.