The Effect of Titanium Dioxide Nanoparticles on Haematococcus pluvialis Biomass Concentration
DOI:
https://doi.org/10.18006/2023.11(2).416.422Keywords:
Algal biomass, Biomass concentration, Growth pattern, H. pluvialis, Titanium dioxide nanoparticlesAbstract
The increased release of Titanium dioxide nanoparticles (TiO2 NPs) into the aquatic ecosystem is caused by the augmented utilization of nanoparticles in personal care and household products. This has resulted in the contamination of marine, aquatic, and ground water resources, causing adverse impacts on the biota and flora, both in vivo and in vitro. The main purpose of this research was to examine the negative impacts of TiO2 NPs on the bioaccumulation of Haematococcus pluvialis. The interaction and buildup of TiO2 NPs on H. pluvialis were studied using scanning electron microscopy (SEM). The exposure of H. pluvialis to TiO2 NPs with increasing concentrations (5–100 μg/mL) and time intervals (24 h to 96 h) impacted the biomass concentration of the microalgae. The SEM images provided evidence of changes in characteristics and impairment of the exterior of exposed cells. The findings revealed that the exposure of H. pluvialis to TiO2 NPs resulted in a decline in biomass, which was dependent on the concentration and duration of exposure. The most severe adverse effects were observed after 96 hours of exposure, with a reduction of 43.29 ± 2.02% of biomass concentration. This study has demonstrated that TiO2 NPs harm H. pluvialis, as evidenced by the negative impact on algal biomass resulting from the binding and buildup of these particles on microalga H. pluvialis. To sum up, the decline in algal growth is caused by the accumulation and interaction of TiO2 NPs on microalgae scoring the adverse effects on the growth of H. pluvialis by TiO2 NPs. The findings of this study call for novel screening methods to detect and eliminate TiO2 NPs contamination in aquatic sources used for the cultivation of microalgae which may otherwise pose delirious effects to the consumers.
References
Anusha, L., Chingangbam, S.D., Sibi, G. (2017). Inhibition Effects of Cobalt Nano Particles Against Fresh Water Algal Blooms Caused by Microcystis and Oscillatoria. American Journal of Applied Scientific Research, 3 (4), 26-32. DOI: https://doi.org/10.11648/j.ajasr.20170304.12
Aravantinou, A. F., Tsarpali, V., Dailianis, S., & Manariotis, I. D. (2015). Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicology and Environmental Safety, 114, 109–116. https://doi.org/10.1016/ j.ecoenv.2015.01.016 DOI: https://doi.org/10.1016/j.ecoenv.2015.01.016
Balaji, S., Kalaivani, T., & Rajasekaran, C. (2014). Biosorption of Zinc and Nickel and Its Effect on Growth of Different Spirulina Strains: Biosorption Potentials of Spirulina Strains. CLEAN - Soil, Air, Water, 42(4), 507–512. https://doi.org/10.1002/clen.201200340 DOI: https://doi.org/10.1002/clen.201200340
Bameri, L., Sourinejad, I., Ghasemi, Z., & Fazelian, N. (2022). Toxicity of TiO2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under long-term exposure. Environmental Science and Pollution Research, 29, 30427–30440. https://doi.org/10.1007/s11356-021-17870-z DOI: https://doi.org/10.1007/s11356-021-17870-z
Banerjee, A., & Roychoudhury, A. (2019). Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. Chemosphere, 286(3), 131827. https://doi.org/10.1016/j.chemosphere.2021.131827 DOI: https://doi.org/10.1016/j.chemosphere.2021.131827
Castro-Bugallo, A., González-Fernández, Á.,Guisande, C., & Barreiro, A. (2014). Comparative Responses to Metal Oxide Nanoparticles in Marine Phytoplankton. Archives of Environmental Contamination and Toxicology, 67(4), 483–493. https://doi.org/10.1007/s00244-014-0044-4 DOI: https://doi.org/10.1007/s00244-014-0044-4
Cepoi, L., Zinicovscaia, I., Rudi, L., Chiriac, T., Rotari, I., Turchenko, V., & Djur, S. (2020). Effects of PEG-Coated Silver and Gold Nanoparticles on Spirulina platensis Biomass during Its Growth in a Closed System. Coatings, 10(8), 717. https://doi.org/10.3390/coatings10080717 DOI: https://doi.org/10.3390/coatings10080717
Comotto, M., Casazza, A. A., Aliakbarian, B., Caratto, V., Ferretti, M., & Perego, P. (2014). Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. The Scientific World Journal, 2014, 961437. https://doi.org/10.1155/2014/961437 DOI: https://doi.org/10.1155/2014/961437
Djearamane, S., Lim, Y. M., Wong, L. S., & Lee, P. F. (2018). Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. Peer J, 6, e4682. https://doi.org/10.7717/peerj.4682 DOI: https://doi.org/10.7717/peerj.4682
Djearamane, S., Lim, Y. M., Wong, L. S., & Lee, P. F. (2019). Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ, 7, e7582. https://doi.org/10.7717/peerj.7582 DOI: https://doi.org/10.7717/peerj.7582
Djearamane, S., Ling Shing, W., Yang Mooi, L., & Lee, P. F. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecology, Environment and Conservation, 26, 2020–2663.
Dmytryk, A., Saeid, A., & Chojnacka, K. (2014). Biosorption of microelements by Spirulina: towards technology of mineral feed supplements. The Scientific World Journal, 2014, 356328. https://doi.org/10.1155/2014/356328 DOI: https://doi.org/10.1155/2014/356328
Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/694305
Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis. The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/694305 DOI: https://doi.org/10.1155/2014/694305
Dore J.E., Cysewski G.R. (2003) Cyanotech Corporation Haematococcus Algae Meal as a Source of Natural Astaxanthin for Aquaculture Feeds. Retrived from http://www.ruscom.com/cyan/ web02/pdfs/naturose/nrtl09.pdf
Gupta, A., Vidyarthi, S.R., & Sankararamakrishnan, N. (2014). Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials, 274, 132-144. DOI: 10.1016/j.jhazmat.2014.03.020 DOI: https://doi.org/10.1016/j.jhazmat.2014.03.020
Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technology, 55(3), 207- 214. https://doi.org/10.1016/0960-8524(95)00002-X
Harker, M., Tsavalos, A. J., & Young, A. J. (1996). Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technology, 55(3), 207- 214. https://doi.org/10.1016/0960-8524(95)00002-X DOI: https://doi.org/10.1016/0960-8524(95)00002-X
Hazeem, L.J., Bououdina, M., Rashdan, S., Brunet, L., Slomianny, C., & Boukherroub, R. (2016). Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environmental Science and Pollution Research, 23(3), 2821–2830 DOI 10.1007/s11356-015-5493-4. DOI: https://doi.org/10.1007/s11356-015-5493-4
Hong, M. E., Choi, Y. Y., & Sim, S. J. (2016). Effect of red cyst cell inoculation and iron(II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. Journal of biotechnology, 218, 25–33. https://doi.org/10.1016/j.jbiotec.2015.11.019 DOI: https://doi.org/10.1016/j.jbiotec.2015.11.019
Iswarya, V., Bhuvaneshwari, M., Alex, S. A., Iyer, S., Chaudhuri, G., Chandrasekaran, P. T., Bhalerao, G. M., Chakravarty, S., Raichur, A. M., Chandrasekaran, N., & Mukherjee, A. (2015). Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology, 161, 154–169. https://doi.org/10.1016/ j.aquatox.2015.02.006 DOI: https://doi.org/10.1016/j.aquatox.2015.02.006
Lee, W.M., & An, Y.J. (2013). Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 91(4), 536–544. https://doi.org/10.1016/j.chemosphere.2012.12.033 DOI: https://doi.org/10.1016/j.chemosphere.2012.12.033
Manier, N., Bado-Nilles, A., Delalain, P., Aguerre-Chariol, O., & Pandard, P. (2013). Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental pollution (Barking, Essex : 1987), 180, 63–70. https://doi.org/ 10.1016/j.envpol.2013.04.040 DOI: https://doi.org/10.1016/j.envpol.2013.04.040
Manzo, S., Miglietta, M. L., Rametta, G., Buono, S., & Di Francia, G. (2013). Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. The Science of the total environment, 445-446, 371–376. https://doi.org/10.1016/j.scitotenv.2012.12.051 DOI: https://doi.org/10.1016/j.scitotenv.2012.12.051
Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: a review. Food & function, 8(8), 2672–2685. https://doi.org/10.1039/ c7fo00409e DOI: https://doi.org/10.1039/C7FO00409E
Metzler, D.M., Li, M., Erdem, A., & Huang, C.P. (2011). Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 170, 538-546. DOI: https://doi.org/10.1016/j.cej.2011.02.002
Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., & Behra, R. (2008). Toxicity of silver
nanoparticles to Chlamydomonas reinhardtii. Environmental science & technology, 42(23), 8959–8964. https://doi.org/10.1021/ es801785m
Sadiq, I. M., Pakrashi, S., Chandrasekaran, N., & Mukherjee, A. (2011). Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 13(8), 3287–3299. https://doi.org/10.1007/s11051-0110243-0 DOI: https://doi.org/10.1007/s11051-011-0243-0
Sendra, M., Yeste, M. P., Gatica, J. M., Moreno-Garrido, I., & Blasco, J. (2017). Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere, 179, 279–289. https://doi.org/10.1016/j.chemosphere.2017.03.123 DOI: https://doi.org/10.1016/j.chemosphere.2017.03.123
Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30. https://doi.org/10.1016/j.ecoenv.2014.11.015 DOI: https://doi.org/10.1016/j.ecoenv.2014.11.015
Xia, B., Chen, B., Sun, X., Qu, K., Ma, F., & Du, M. (2015). Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Science of The Total Environment, 508, 525–533. https://doi.org/10.1016/j.scitotenv.2014.11.066 DOI: https://doi.org/10.1016/j.scitotenv.2014.11.066
Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387 DOI: https://doi.org/10.3390/nano10020387
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.