Beneficial impacts of goat milk on the nutritional status and general well-being of human beings: Anecdotal evidence
DOI:
https://doi.org/10.18006/2023.11(1).1.15Keywords:
Goat milk, Nutritional value, Therapeutic properties, Fat profile, Protein, Casein, Human healthAbstract
Goats provide an essential food supply in the form of milk and meat. Goat milk has distinct qualities, but it shares many similarities with human and bovine milk regarding its nutritional and therapeutic benefits. Because of their different compositions, goat and cow milk products could have different tastes, nutrients, and medicinal effects. Modification in composition aid of goat milk determining the viability of goat milk processing methods. Comparatively, goat's milk has higher calcium, magnesium, and phosphorus levels than cow's or human milk but lower vitamin D, B12, and folate levels. Goat milk is safe and healthy for infants, the old, and healing ailments. Capric, caprylic, and capric acid are three fatty acids that have shown promise as potential treatments for various medical issues. Considering the benefits and drawbacks of goat milk over cow milk is essential; goat milk is more digestible, has unique alkalinity, has a better buffering capacity, and has certain medicinal benefits. Acidifying goat milk shrinks fat globules and makes protein friable (with less αs1-casein and more αs2-casein). Goat milk treats malabsorption illnesses because it has more short- and medium-chain triglycerides that give developing children energy. In wealthy countries, goat milk and its products—yoghurt, cheeses, and powdered goods—are popular with connoisseurs and persons with allergies and gastrointestinal issues who need alternative dairy products. A food product category containing fermented goat milk with live probiotic microbes appears promising nutritionally and medicinally. This article presents anecdotal evidence of the therapeutic effects of consuming goat milk for human health and its nutritional value.
References
Arasi S, Cafarotti A, Fiocchi A. (2022). Cow's milk allergy. Current Opinions in Allergy and Clinical Immunology, 22(3):181-187. doi: 10.1097/ACI.0000000000000823. DOI: https://doi.org/10.1097/ACI.0000000000000823
Ballabio, C., Chessa, S., Rignanese, D., Gigliotti, C., et al. (2011). Goat milk allergenicity as a function of αs₁-casein genetic polymorphism. Journal of Dairy Science, 94(2), 998-1004. doi: 10.3168/jds.2010-3545. DOI: https://doi.org/10.3168/jds.2010-3545
Basnet, S., Schneider, M., Gazit, A., Mander, G., & Doctor, A. (2010). Fresh goat's milk for infants: myths and realities-a review. Pediatrics, 125(4), 973-977. doi: 10.1542/peds.2009-1906. DOI: https://doi.org/10.1542/peds.2009-1906
Carneiro, I.S., Menezes, J.N.R., Maia, J.A., Miranda, A.M., Oliveira, V.B.S., Murray, J.D., Maga, E.A., Bertolini, M., & Bertolini, L.R. (2018). Milk from transgenic goat expressing human lysozyme for recovery and treatment of gastrointestinal pathogens. European Journal of Pharmaceutical Science, 112, 79-86. doi: 10.1016/j.ejps.2017.11.005. DOI: https://doi.org/10.1016/j.ejps.2017.11.005
Carr, L.E., Virmani, M.D., Rosa, F., Munblit, D., Matazel, K.S., Elolimy, A.A., & Yeruva, L. (2021). Role of human milk bioactives on infants' gut and immune health. Frontiers in Immunology, 12, 604080. doi: 10.3389/fimmu.2021.604080. DOI: https://doi.org/10.3389/fimmu.2021.604080
Cebo, C., Caillat, H., Bouvier, F., & Martin, P. (2010). Major proteins of the goat milk fat globule membrane. Journal of Dairy Science, 93(3):868-76. doi: 10.3168/jds.2009-2638. DOI: https://doi.org/10.3168/jds.2009-2638
Chandran, D., & Arabi, M. (2019). Therapeutic management of anaplasmosis in a cross-bred Jersey cow: A case report. International Journal of Pharmaceutical Sciences Review and Research, 59(2), 56-67.
Chandran, D., Padmaja, P.B., & Vishnurahav, R.B. (2019). Haemato-biochemical changes and therapeutic management of Babesiosis in cattle. Journal of Veterinary and Animal Sciences, 50(1), 68-70.
Chandran, D. (2021a). Veterinary phytomedicine in India: A review. International Journal of Scientific Research in Science, Engineering and Technology, 8(3), 598-605. doi: 10.32628/ IJSRST2183135. DOI: https://doi.org/10.32628/IJSRST2183135
Chandran, D. (2021b). Bovine babesiosis: A general review. International Journal of Veterinary Sciences and Animal Husbandry, 6(3), 40-44.
Chandran, D., & Athulya, P.S. (2021). A Study of the clinico-haematological profile and therapeutic management of acute babesiosis in a cross-bred Jersey cow–A case report. International Journal of Pharmaceutical Sciences Review and Research, 68(1), 60-62. doi: 10.47583/ijpsrr.2021.v68i01.010 DOI: https://doi.org/10.47583/ijpsrr.2021.v68i01.010
Chandran, D., Rojan, P.M., Venkatachalapathy, T., & Lejaniya, A.S. (2021a). Mortality and morbidity pattern in goats under organized farm conditions of Kerala. Journal of Veterinary and Animal Sciences, 52(2): 175-179. doi: 10.51966/ jvas.2021.52.2.178-182.
Chandran, D., Lejaniya, A.S., Yatoo, M.I., Mohapatra, R.K., & Dhama, K. (2021b). Major health effects of casein and whey proteins present in cow Milk: A narrative review. The Indian Veterinary Journal, 98(11), 9-19.
Chandran, D., Rajan, A., & George, A.B. (2021c). Clinico-haematological profile and therapeutic management of anaplasmosis in a cross-bred Malabari goat: A case report. The Pharma Innovation, 10(7S), 644-646.
Chauhan, S., Powar, P., & Mehra, R. (2021). A review on nutritional advantages and nutraceutical properties of cow and goat milk. International Journal of Applied Research, 7(10), 101-105. doi: 10.22271/allresearch.2021.v7.i10b.9025. DOI: https://doi.org/10.22271/allresearch.2021.v7.i10b.9025
Chawla, D., Chirla, D., Dalwai, S., Deorari, A.K., et al. (2020). Federation of Obstetric and Gynaecological Societies of India (FOGSI), National Neonatology Forum of India (NNF) and Indian Academy of Pediatrics (IAP), Perinatal-Neonatal Management of COVID-19 Infection - Guidelines of the Federation of Obstetric and Gynaecological Societies of India (FOGSI), National Neonatology Forum of India (NNF), and Indian Academy of Pediatrics (IAP). Indian Pediatriacs, 57(6), 536-548. doi: 10.1007/s13312-020-1852-4. DOI: https://doi.org/10.1007/s13312-020-1852-4
Chen, T., Wang, L., Li, Q., Long, Y., et al. (2020). Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiology, 20(1), 228. doi: 10.1186/s12866-020-01920-6. DOI: https://doi.org/10.1186/s12866-020-01920-6
Chilliard, Y., Ferlay, A., Rouel, J., & Lamberet, G. (2003). A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. Journal of Dairy Science, 86(5), 1751-1770. doi: 10.3168/jds.S0022-0302(03)73761-8. DOI: https://doi.org/10.3168/jds.S0022-0302(03)73761-8
Collard, K.M., & McCormick, D.P. (2021). A nutritional comparison of cow's milk and alternative milk products. Academia Pediatratics, 21(6), 1067-1069. doi: 10.1016/j.acap.2020.12.007. DOI: https://doi.org/10.1016/j.acap.2020.12.007
Costa, R.G., Beltrão Filho, E.M., de Sousa, S., da Cruz, G.R., Queiroga Rde, C., & da Cruz, E.N. (2016). Physicochemical and sensory characteristics of yoghurts made from goat and cow milk. Animal Science Journal, 87(5), 703-709. doi: 10.1111/asj.12435. DOI: https://doi.org/10.1111/asj.12435
Clark, S., & Mora García, M.B. (2017). A 100-year review: Advances in goat milk research. Journal of Dairy Science, 100(12), 10026-10044. doi: 10.3168/jds.2017-13287. DOI: https://doi.org/10.3168/jds.2017-13287
Deepak, C., Uma, R., & Linu, E. (2020a). Characterization of Malabari goat lactoferrin and its pepsin hydro-lysate. Journal of Veterinary and Animal Sciences, 51(1), 40-47.
Deepak, C., Rani, K.J., Shyama, K., & Ally, K. (2020b) Effect of dietary incorporation of Ksheerabala residue on growth performance in Wistar rats. Journal of Veterinary and Animal Sciences, 51(2), 179-183.
Dhasmana, S., Das, S., & Shrivastava, S. (2022). Potential nutraceuticals from the casein fraction of goat's milk. Journal of Food Biochemistry, 46(6), e13982. doi: 10.1111/jfbc.13982. DOI: https://doi.org/10.1111/jfbc.13982
Faccia, M., D'Alessandro, A.G., Summer, A., & Hailu, Y. (2020). Milk products from minor dairy species: A review. Animals (Basel), 10(8), 1260. doi: 10.3390/ani10081260. DOI: https://doi.org/10.3390/ani10081260
Food and Agriculture Organization of the United Nations. (2019). Food and Agriculture Organization of the United Nations statistical databases. http:// faostat.fao.org. Accessed: 21 February 2022.
Gallier, S., Tolenaars, L., & Prosser, C. (2020). Whole goat milk as a source of fat and milk fat globule membrane in infant formula. Nutrients, 12(11), 3486. doi: 10.3390/nu12113486. DOI: https://doi.org/10.3390/nu12113486
Government of India (GOI). (2019). Basic Animal Husbandry Statistics. Ministry of Agriculture. Department of Animal Husbandry and Dairying. New Delhi.
He, T., Rombouts, W., Einerhand, A.W.C., Hotrum, N., & van de Velde, F. (2022). Gastric protein digestion of goat and cow milk infant formula and human milk under simulated infant conditions. International Journal of Food Science and Nutrition, 73(1), 28-38. doi: 10.1080/09637486.2021.1921705. DOI: https://doi.org/10.1080/09637486.2021.1921705
Hirsiger, J.R., Heijnen, I.A., Hartmann, K., & Berger, C.T. (2022). Anaphylaxis to goat's and sheep's milk in an adult who tolerated cow's milk: A sensitization profile study. Journal of Investigative Allergology and Clinical Immunology, 32(2), 154-156. doi: 10.18176/jiaci.0721. DOI: https://doi.org/10.18176/jiaci.0721
Jirillo, F., Jirillo, E., & Magrone, T. (2010). Donkey's and goat's milk consumption and benefits to human health with special reference to the inflammatory status. Current Pharmaceutical Design, 16(7), 859-863. doi: 10.2174/138161210790883688. DOI: https://doi.org/10.2174/138161210790883688
Kaur, H., & Pareek, S. (2022). Lactation and COVID-19 infection. Iran Journal of Nurses and Midwifery Research, 27(3):250. doi: 10.4103/ijnmr.ijnmr_395_21. DOI: https://doi.org/10.4103/ijnmr.ijnmr_395_21
Kazimierska, K., & Kalinowska-Lis, U. (2021). Milk proteins-Their biological activities and use in cosmetics and dermatology. Molecules, 26(11), 3253. doi: 10.3390/molecules26113253. DOI: https://doi.org/10.3390/molecules26113253
Khan, I.T., Nadeem, M., Imran, M., Ullah, R., Ajmal, M., & Jaspal, M.H. (2019). Antioxidant properties of Milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Disease, 18(1), 41. doi: 10.1186/s12944-019-0969-8. DOI: https://doi.org/10.1186/s12944-019-0969-8
Kiskini, A., & Difilippo, E. (2013). Oligosaccharides in goat milk: structure, health effects and isolation. Cell and Molecular Biology (Noisy-le-grand), 59(1), 25-30.
Kok, C.R., & Hutkins, R. (2018). Yoghurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews, 76(1), 4-15. doi: 10.1093/nutrit/nuy056. DOI: https://doi.org/10.1093/nutrit/nuy056
Kumar, H., Yadav, D., Kumar, N., Seth, R., & Goyal, A.K. (2016). Nutritional and nutraceutical properties of goat milk-a review. Indian Journal of Dairy Science, 69, 513-518.
Kumari, N., Kumar, M., Mekhemar, M., Lorenzo, J.M., et al. (2022). Therapeutic uses of wild plant species used by rural inhabitants of Kangra in the western Himalayan region. South African Journal of Botany, 148, 415-436. doi:10.3390/ horticulturae7100343. DOI: https://doi.org/10.1016/j.sajb.2022.05.004
Lejaniya, A.S., Chandran, D., Venkatachalapathy, T., Bashir, B.P., et al. (2021a). Analysis of milk production performance of Attappadi Black, Malabari and cross-bred goats under organized farm conditions of Kerala. The Indian Veterinary Journal, 98(05), 13-19.
Lejaniya, A.S., Chandran, D., & Geetha, R. (2021b). Recent trends in application of lactic acid bacteria (LAB) in dairy and biomedical industry: A critical review. World Journal of Pharmaceutical Research, 10(12), 577-591. doi: 10.20959/wjpr202112-21749.
Li, N., Xie, Q., Chen, Q., Evivie, S.E., Liu, D., Dong, J., Huo, G., & Li, B. (2020). Cow, goat, and mare milk diets differentially modulated the immune system and gut microbiota of mice colonized by healthy infant feces. Journal of Agriculture and Food Chemistry, 68(51), 15345-15357. doi: 10.1021/acs.jafc.0c06039. DOI: https://doi.org/10.1021/acs.jafc.0c06039
Liu, Y., & Zhang, F. (2022). Comparison of whole goat milk and its major fractions regarding the modulation of gut microbiota. Journal of Science of Food and Agriculture, 102(9), 3618-3627. doi: 10.1002/jsfa.11708. DOI: https://doi.org/10.1002/jsfa.11708
Lund, A., & Ahmad, M. (2021). Production potential, nutritive value and nutraceutical effects of goat milk. Journal of Animal Health Production, 9(1), 65-71. Doi: 10.17582/journal.jahp/2021/ 9.1.65.71. DOI: https://doi.org/10.17582/journal.jahp/2021/9.1.65.71
Manuvanthra, A., Chandran, D., Emran, T.B., Aslam, M.M K., et al. (2022). Dryland livestock rearing relies heavily on tree fodders: A narrative review. The Indian Veterinary Journal, 99(10), 7-15.
Martemucci, G., & D'Alessandro, A.G. (2013). Progress in nutritional and health profile of milk and dairy products: a novel drug target. Endocrine Metabolism, Immune Disorders and Drug Targets, 13(3), 209-233. doi: 10.2174/18715303113136660045. DOI: https://doi.org/10.2174/18715303113136660045
Marius, L.N., Shipandeni, M.N.T., & Togarepi, C. (2020). Review on the status of goat production, marketing, challenges and opportunities in Namibia. Tropical Animal Health Production, 53(1), 30. doi: 10.1007/s11250-020-02468-3. DOI: https://doi.org/10.1007/s11250-020-02468-3
Mirzaei, H., & Sharafati Chaleshtori, R. (2022). Role of fermented goat milk as a nutritional product to improve anemia. Journal of Food Biochemistry, 46(6), e13969. doi: 10.1111/jfbc.13969. DOI: https://doi.org/10.1111/jfbc.13969
Novac, C.S., & Andrei, S. (2020). The impact of mastitis on the biochemical parameters, oxidative and nitrosative stress markers in goat's milk: A review. Pathogens, 9(11), 882. doi: 10.3390/ pathogens9110882. DOI: https://doi.org/10.3390/pathogens9110882
Pastuszka, R., Barłowska, J., & Litwińczuk, Z. (2016). Allergenicity of milk of different animal species in relation to human milk. Postepy Higieny i Medycyny Doswiadczalnej, 70(0), 1451-1459. doi: 10.5604/17322693.1227842. DOI: https://doi.org/10.5604/17322693.1227842
Patange, D.D.D., Virshasen Vinayak, D., Chandran, D., Kumar, M., & Lorenzo, J.M. (2022a). Comparative effect of cooling on the physico-chemical-sensory properties of ghee from cow and buffalo milk, and evaluation of the low-fat spread prepared from cow and buffalo milk ghee. Food Analytical Methods, 1-11. doi:10.1007/ s12161-022-02312-4.
Patange, D.D., Pansare, K.S., Kumar, M., Kumari, A., et al. (2022b). Studies on utilization and shelf life of Piper betel leaves added ghee-based low-fat spread. Food Analytical Methods, 1-12. doi: 10.1007/s12161-022-02400-5. DOI: https://doi.org/10.1007/s12161-022-02400-5
Poppitt, S.D. (2020). Cow's milk and dairy consumption: Is there now consensus for cardiometabolic health? Frontiers in Nutrition, 7, 574725. doi: 10.3389/fnut.2020.574725. DOI: https://doi.org/10.3389/fnut.2020.574725
Prakash, P., Kumar, M., Pundir, A., Puri, S., et al. (2021a) Documentation of commonly used ethnoveterinary medicines from wild plants of the high mountains in Shimla District, Himachal Pradesh, India. Horticulturae, 7(10), 351. doi: 10.3390/ horticulturae7100351. DOI: https://doi.org/10.3390/horticulturae7100351
Prakash, P., Kumar, M., Kumari, N., Prakash, S., et al. (2021b). Therapeutic uses of wild plants by rural inhabitants of Maraog region in district Shimla, Himachal Pradesh, India. Horticulturae, 7(10), 343. doi: 10.3390/horticulturae7100343. DOI: https://doi.org/10.3390/horticulturae7100343
Prosser, C.G. (2021). Compositional and functional characteristics of goat milk and relevance as a base for infant formula. Journal of Food Science, 86(2):257-265. doi: 10.1111/1750-3841.15574. DOI: https://doi.org/10.1111/1750-3841.15574
Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerald, G.F., & Cotter, P.D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37(5), 664-98. doi: 10.1111/1574-6976.12030. DOI: https://doi.org/10.1111/1574-6976.12030
Rai, D.C., Rathaur, A. & Yadav, A.K. (2022). Nutritional and nutraceutical properties of goat milk for human health: A review. Indian Journal of Dairy Science, 75(1), 1-10. doi: 10.33785/ IJDS.2022.v75i01.001. DOI: https://doi.org/10.33785/IJDS.2022.v75i01.001
Roy, D., Ye, A., Moughan, P.J., & Singh, H. (2021). Structural changes in cow, goat, and sheep skim milk during dynamic in vitro gastric digestion. Journal of Dairy Science, 104(2), 1394-1411. doi: 10.3168/jds.2020-18779. DOI: https://doi.org/10.3168/jds.2020-18779
Saikia, D., Hassani, M.I., & Walia, A. (2022). Goat milk and its nutraceutical properties. International Journal of Applied Research, 8(4), pp.119-22. doi: 10.22271/allresearch.2022.v8.i4b.9639. DOI: https://doi.org/10.22271/allresearch.2022.v8.i4b.9639
Saleena, L.A.K., Chandran, D., Geetha, R., Radha, R., & Sathian, C.T. (2022a). Optimization and identification of lactic acid bacteria with higher mannitol production potential. Indian Journal of Animal Research, 1, 8. doi: 10.18805/IJAR.B-4759. DOI: https://doi.org/10.18805/IJAR.B-4759
Saleena, L.A.K., Chandran, D., Rayirath, G., Shanavas, A., Rajalingam, S., Vishvanathan, M., Sharun, K., & Dhama, K. (2022b). Development of low-calorie functional yoghurt by incorporating mannitol producing lactic acid bacteria (Leuconostoc pseudomesenteroides) in the standard yoghurt culture. Journal of Pure and Applied Microbiology, 16(1), 729-736. doi: 10.22207/ JPAM.16.1.78. DOI: https://doi.org/10.22207/JPAM.16.1.78
Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2014). Major proteins in goat milk: an updated overview on genetic variability. Molecular Biology Reports, 41(2), 1035-1048. doi: 10.1007/s11033-013-2949-9. DOI: https://doi.org/10.1007/s11033-013-2949-9
Siefarth, C., & Buettner, A. (2014). The aroma of goat milk: seasonal effects and changes through heat treatment. Journal of
Agriculture and Food Chemistry, 62(49), 11805-11817. doi: 10.1021/jf5040724. DOI: https://doi.org/10.1021/jf5040724
Sousa, Y.R.F., Araújo, D.F.S., Pulido, J.O., Pintado, M.M.E., Martínez-Férez, A., & Queiroga, R.C.R.E. (2019). Composition and isolation of goat cheese whey oligosaccharides by membrane technology. International Journal of Biological Macromolecules, 139, 57-62. doi: 10.1016/j.ijbiomac.2019.07.181. DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.181
Stergiadis, S., Nørskov, N.P., Purup, S., Givens, I., & Lee, M.R.F. (2019). Comparative nutrient profiling of retail goat and cow milk. Nutrients, 11(10), 2282. doi: 10.3390/nu11102282. DOI: https://doi.org/10.3390/nu11102282
Tiwari, B.B., Subedi, D., Bhandari, S., Shrestha, P., Pathak, C.R., Chandran, D., Pandey, G., Mohankumar, P., & Dhama, K. (2022). Prevalence and risk factors of staphylococcal subclinical mastitis in dairy animals of Chitwan, Nepal. Journal of Pure and Applied Microbiology, 16(2), 1392-1403. doi: 10.22207/JPAM.16.2.67. DOI: https://doi.org/10.22207/JPAM.16.2.67
Toral, P.G., Chilliard, Y., Rouel, J., Leskinen, H., Shingfield, K.J., & Bernard, L. (2015). Comparison of the nutritional regulation of milk fat secretion and composition in cows and goats. Journal of Dairy Science, 98(10), 7277-7297. doi: 10.3168/jds.2015-9649. DOI: https://doi.org/10.3168/jds.2015-9649
Turck, D. (2013). Cow's milk and goat's milk. World Reviews in Nutrition and Diet, 108, 56-62. doi: 10.1159/000351485. DOI: https://doi.org/10.1159/000351485
van Leeuwen, S.S., Te Poele, E.M., Chatziioannou, A.C., Benjamins, E., Haandrikman, A., & Dijkhuizen, L. (2020). Goat milk oligosaccharides: Their diversity, quantity, and functional properties in comparison to human milk oligosaccharides. Journal of Agriculture and Food Chemistry, 68(47), 13469-13485. doi: 10.1021/acs.jafc.0c03766. DOI: https://doi.org/10.1021/acs.jafc.0c03766
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.