Assessment of bacterial diversity in the chicken litter: A potent risk to environmental health
DOI:
https://doi.org/10.18006/2023.11(4).640.649Keywords:
Antibiotics, Antimicrobial-Resistance Genes (ARGs), Chicken Litters, Manure, SoilAbstract
Using chicken litter as an organic fertilizer on land is the most common, cheapest and environmentally safest way to manage the latter generated swiftly from the poultry industry. Raw chicken litter has been applied to field soils where various vegetables are cropped to increase yield or productivity. However, the chicken litter frequently come in contact with different environments, such as water, soil, microbes and vegetation. When chickens defecate, their litters, in a few countries, are particularly reused for the next flock, potentially causing cross-contamination. Due to various contact points in the environment, a high probability of bacterial transmission is predicted, which could lead to infection spread in animals and humans. Consumption of contaminated water, food, and meat could lead to the transmission of deadly infections. Microbes in the chicken litter also affect the grazing animals while feeding on fields duly applied with chicken litter as manure. The maximum permissible limits (MPLs) in the chicken litter for land application should not exceed 106-108 CFU/g for Coliform bacteria. Antibiotics are regularly mixed in the diet or drinking water of chicken grown in marketable poultry farms for treating bacterial diseases. Rampant usage of antimicrobials also results in resistant bacteria's survival in animal excreta. Herein, we surveyed the literature to identify the major bacterial genus harboured in the fields applied with chicken manure to increase soil fertility. Our detailed survey identified different bacterial pathogens from chicken litter samples from different investigations. Most studies showed the prevalence of Campylobacter, Salmonella, Enterococcus, E. coli, Bacillus, Comamonas, Proteus and Citrobacter, including many other bacterial species in the chicken litter samples. This article suggested that chicken litter does not meet the standard parameters for direct application as organic fertilizer in the fields. Before being applied to the ground, chicken litter should be treated to lessen the danger of polluting crops or water supplies by reducing the prevalence of harmful bacteria carrying antibiotic-resistance genes.
References
Aires, A. (2009). Biodigestão anaeróbica da cama da cama de frangos de corte com ou sem separação das frações sólida e líquida. Master's thesis, Faculdade de Ciências Agrárias e Veterinárias-UNESP Jaboticabal, Brazil.
Amarsy, R., Jacquier, H., Munier, A.L., et al. (2021). Outbreak of NDM-1-producing Klebsiella pneumoniae in the intensive care unit during the COVID-19 pandemic: Another nightmare. American Journal of Infection Control, 49, 1324-1326. doi:10.1016/j.ajic.2021.07.004 DOI: https://doi.org/10.1016/j.ajic.2021.07.004
Apollon, W., Iryna, R., Nancy, G.G., et al. (2022). Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Science of The Total Environment, 817. doi:10.1016/j.scitotenv.2022.153055. DOI: https://doi.org/10.1016/j.scitotenv.2022.153055
Asefa Kebede, I., & Duga, T. (2022). Prevalence and Antimicrobial Resistance of Salmonella in Poultry Products in Central Ethiopia. Veterinary Medicine International, 2022, 8625636. doi:10.1155/2022/8625636 DOI: https://doi.org/10.1155/2022/8625636
Bergey, D., & Holt, J. (1993). Bergey's manual of determinative bacteriology. Williams & Wilkins, Baltimore 9th edition.
Bolan, N.S., Szogi, A.A., Chuasavathi, T., et al. (2010). Uses and management of poultry litter. World's Poultry Science Journal, 66, 673-698. doi:10.1017/S0043933910000656 DOI: https://doi.org/10.1017/S0043933910000656
Bucher, M.G., Zwirzitz, B., Oladeinde, A., et al. (2020). Reused poultry litter microbiome with competitive exclusion potential against Salmonella Heidelberg. Journal of Environmental Quality, 49, 869-881. doi:10.1002/jeq2.20081 DOI: https://doi.org/10.1002/jeq2.20081
Cabassi, C.S., Taddei, S., Predari, G., et al. (2004). Bacteriologic findings in ostrich (Struthio camelus) eggs from farms with reproductive failures. Avian Diseases, 48, 716-722. doi:10.1637/7142 DOI: https://doi.org/10.1637/7142
Castanon, J.I. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science, 86, 2466-2471. doi:10.3382/ps.2007-00249 DOI: https://doi.org/10.3382/ps.2007-00249
Chander, Y., Gupta, S.C., Goyal, S.M., et al. (2007). Antibiotics: Has the magic gone? Journal of the Science of Food and Agriculture, 87, 739-742. DOI: https://doi.org/10.1002/jsfa.2764
Chen, C.M., Wang, M., Li, X.P., et al. (2021). Homology analysis between clinically isolated extraintestinal and enteral Klebsiella pneumoniae among neonates. BMC Microbiology, 21, 25. doi:10.1186/s12866-020-02073-2 DOI: https://doi.org/10.1186/s12866-020-02073-2
Cordoba, A., Monterrubio, J., Bueno, I., et al. (2005). [Severe community-acquired pneumonia due to Proteus mirabilis]. Enfermedades Infecciosas y Microbiología Clínica, 23, 249-250. doi:10.1157/13073156 DOI: https://doi.org/10.1157/13073156
Croxen, M.A., Law, R.J., Scholz, R., et al. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical Microbiology Reviews, 26, 822-880. doi:10.1128/ CMR.00022-13 DOI: https://doi.org/10.1128/CMR.00022-13
Dawson, P., Buyukyavuz, A., Ionita, C., et al. (2023). Effects of DNA extraction methods on the real time PCR quantification of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in chicken feces and ceca contents. Poultry Science, 102, 102369. doi:10.1016/j.psj.2022.102369 DOI: https://doi.org/10.1016/j.psj.2022.102369
De Cesare, A., Caselli, E., Lucchi, A., et al. (2019). Impact of a probiotic-based cleaning product on the microbiological profile of broiler litters and chicken caeca microbiota. Poultry Science, 98. doi:10.3382/ps/pez148 DOI: https://doi.org/10.3382/ps/pez148
Deng, W., Zhang, A., Chen, S., et al. (2020). Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management, 257, 109980. doi:10.1016/j.jenvman.2019.109980 DOI: https://doi.org/10.1016/j.jenvman.2019.109980
Dhanarani, T.S., Shankar, C., Park, J., et al. (2009). Study on acquisition of bacterial antibiotic resistance determinants in poultry litter. Poultry Science, 88, 1381-1387. doi:10.3382/ps.2008-00327 DOI: https://doi.org/10.3382/ps.2008-00327
Dornelas, K.C., Mascarenhas, N.M.H., Dos Santos da Rocha, P.A., et al. (2023). Chicken bed reuse. Environmental Science Pollution Research International, 30, 39537-39545. doi:10.1007/s11356-023-25850-8. DOI: https://doi.org/10.1007/s11356-023-25850-8
Dzelalija, M., Kvesic, M., Novak, A., et al. (2023). Microbiome profiling and characterization of virulent and vancomycin-resistant Enterococcus faecium from treated and untreated wastewater, beach water and clinical sources. Science of Total Environment, 858, 159720. doi:10.1016/j.scitotenv.2022.159720 DOI: https://doi.org/10.1016/j.scitotenv.2022.159720
Enticknap, J.J., Nonogaki, H., Place, A.R., et al. (2006). Microbial diversity associated with odor modification for production of fertilizers from chicken litter. Applied Environmental Microbiology, 72, 4105-4114. doi:10.1128/AEM.02694-05 DOI: https://doi.org/10.1128/AEM.02694-05
Fatoba, D.O., Amoako, D.G., Akebe, A.L.K., et al. (2022). Genomic analysis of antibiotic-resistant Enterococcus spp. reveals novel enterococci strains and the spread of plasmid-borne Tet(M), Tet(L) and Erm(B) genes from chicken litter to agricultural soil in South Africa. Journal of Environmental Management, 302, 114101. doi:10.1016/j.jenvman.2021.114101 DOI: https://doi.org/10.1016/j.jenvman.2021.114101
Garcia, A., Fox, J.G., & Besser, T.E. (2010). Zoonotic enterohemorrhagic Escherichia coli: A One Health perspective. ILAR Journal, 51, 221-232. doi:10.1093/ilar.51.3.221 DOI: https://doi.org/10.1093/ilar.51.3.221
Giaouris, E. (2023). Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. within the Food Chain. Advanced Experimental Medicine and Biology, 1370, 77-89. doi:10.1007/5584_2022_749 DOI: https://doi.org/10.1007/5584_2022_749
Greenberg, C.B., Davidson, E.B., Bellmer, D.D., et al. (2004). Evaluation of the tensile strengths of four monofilament absorbable suture materials after immersion in canine urine with or without bacteria. American Journal of Veterinary Research, 65, 847-853. doi:10.2460/ajvr.2004.65.847 DOI: https://doi.org/10.2460/ajvr.2004.65.847
Gurmessa, B., Pedretti, E.F., Cocco, S., et al. (2020). Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. Science of Total Environment, 721, 137532. doi:10.1016/j.scitotenv.2020.137532 DOI: https://doi.org/10.1016/j.scitotenv.2020.137532
Hafez, H. (2005). Governmental regulations and concept behind eradication and control of some important poultry diseases. World's Poultry Science Journal, 61, 569-582 doi:10.1079/WPS200571 DOI: https://doi.org/10.1079/WPS200571
Hafez, H., Schroth, S., Stadler, A., et al. (2014). Detection of Campylobacter, Salmonella and E. coli that produce verotoxin during the growing and processing of turkey flocks. Archiv für Geflügelkunde, 65, 130-136.
Haslam, D., & St. Geme, J.W. (2018). Enterococcus Species: Principles and Practice of Pediatric Infectious Diseases. Elsevier Inc; Amsterdam, The Netherlands: pp. 729–732. https://doi.org/10.1016/B978-0-323-40181-4.00120-1. DOI: https://doi.org/10.1016/B978-0-323-40181-4.00120-1
Helmy, Y.A., Closs, G., Jr., Jung, K., et al. (2022). Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infection and Immunity, 90, e0033722. doi:10.1128/iai.00337-22 DOI: https://doi.org/10.1128/iai.00337-22
Hodgson, C.J., Oliver, D.M., Fish, R.D., et al. (2016). Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection. Journal of Environmental Management, 183, 325-332. doi:10.1016/j.jenvman.2016.08.047 DOI: https://doi.org/10.1016/j.jenvman.2016.08.047
Hugas, M., & Beloeil, P. (2014). Controlling Salmonella along the food chain in the European Union - progress over the last ten years. Euro Surveillance, 19, doi:10.2807/1560-7917.es2014.19.19.20804 DOI: https://doi.org/10.2807/1560-7917.ES2014.19.19.20804
IFT ERP. (2006). Antimicrobial Resistance: Implications for the Food System: An Expert Report, Funded by the IFT Foundation. Comprehensive Reviews In Food Science and Food Safety, 5, 71-137. doi:10.1111/j.1541-4337.2006.00004.x DOI: https://doi.org/10.1111/j.1541-4337.2006.00004.x
Igbinosa, I.H., Amolo, C.N., Beshiru, A., et al. (2023). Identification and characterization of MDR virulent Salmonella spp isolated from smallholder poultry production environment in Edo and Delta States, Nigeria. PLoS One, 18, e0281329. doi:10.1371/journal.pone.0281329 DOI: https://doi.org/10.1371/journal.pone.0281329
Jeamsripong, S., Kuldee, M., Thaotumpitak, V., et al. (2023) Antimicrobial resistance, Extended-Spectrum beta-Lactamase production and virulence genes in Salmonella enterica and Escherichia coli isolates from estuarine environment. PLoS One, 18, e0283359. doi:10.1371/journal.pone.0283359 DOI: https://doi.org/10.1371/journal.pone.0283359
Kassim, Z., Aziz, A.A., Haque, Q.M., et al. (2003). Isolation of Proteus mirabilis from severe neonatal sepsis and central nervous system infection with extensive pneumocephalus. European Journal of Pediatrics, 162, 644-645. doi:10.1007/s00431-003-1240-9 DOI: https://doi.org/10.1007/s00431-003-1240-9
Khong, M.J., Snyder, A.M., Magnaterra, A.K., et al. (2022). Antimicrobial resistance profile of Escherichia coli isolated from poultry litter. Poultry Science, 102, 102305. doi:10.1016/j.psj.2022.102305 DOI: https://doi.org/10.1016/j.psj.2022.102305
Kim, E., Morgan, N.K., Moss, A.F., et al. (2022). Characterization of undigested components throughout the gastrointestinal tract of broiler chickens fed either a wheat- or maize-based diet. Animal Nutrition, 8, 153-159. doi:10.1016/j.aninu.2021.09.011 DOI: https://doi.org/10.1016/j.aninu.2021.09.011
Kubasova, T., Faldynova, M., Crhanova, M., et al. (2022). Succession, Replacement, and Modification of Chicken Litter Microbiota. Applied and Environmental Microbiology, 88, e0180922. doi:10.1128/aem.01809-22 DOI: https://doi.org/10.1128/aem.01809-22
Kumar, S., Anwer, R., Yadav, M., Sehrawat, N., et al. (2021a). Molecular Typing and Global Epidemiology of Staphylococcus aureus. Current Pharmacology Reports, 7, 179–186 doi:10.1007/s40495-021-00264-7 DOI: https://doi.org/10.1007/s40495-021-00264-7
Kumar, S., Anwer, R., Yadav, M., et al. (2021b). Isolation and characterization of acinetobacter baumannii from chicken meat samples in north India. Asian Journal of Biological and Life Sciences, 10, 462-468. doi:10.5530/ajbls.2021.10.61 DOI: https://doi.org/10.5530/ajbls.2021.10.61
Kumar, S., Anwer, R., Sehrawat, A., et al. (2021c). Assessment of Bacterial Pathogens in Drinking Water: a Serious Safety Concern. Current Pharmacology Reports, 7, 206-212. doi:10.1007/s40495-021-00263-8 DOI: https://doi.org/10.1007/s40495-021-00263-8
Kumar, S., Anwer, R., Sehrawat, A., et al. (2021d). Isolation and characterization of pathogenic bacteria from drinking water in North India. International Journal of Environmental Science and Technology, 19, 12605–12610. doi:10.1007/s13762-021-03774-5 DOI: https://doi.org/10.1007/s13762-021-03774-5
Kumar, S., Yadav, M., Devi, A., et al. (2022). Assessment of Pathogenic Microorganisms Associated with Vegetable Salads. Asian Journal of Biological and Life Sciences, 11, 1-7 doi:10.5530/ajbls.2022.11.1 DOI: https://doi.org/10.5530/ajbls.2022.11.1
Kyakuwaire, M., Olupot, G., Amoding, A., et al. (2019). How Safe is Chicken Litter for Land Application as an Organic Fertilizer? A Review. International Journal of Environmental Research and Public Health, 16, doi:10.3390/ijerph16193521 DOI: https://doi.org/10.3390/ijerph16193521
Lee, K.W., Lillehoj, H.S., Lee, S.H., et al. (2011). Impact of fresh or used litter on the posthatch immune system of commercial broilers. Avian Diseases, 55, 539-544. doi:10.1637/9695-022511-Reg.1 DOI: https://doi.org/10.1637/9695-022511-Reg.1
Li, X., Tang, H., Xu, Z., et al. (2022). Prevalence and characteristics of Campylobacter from the genital tract of primates and ruminants in Eastern China. Transboundary and Emerging Diseases, 69, e1892-e1898. doi:10.1111/tbed.14524 DOI: https://doi.org/10.1111/tbed.14524
Li, X., Zhao, H., Lockatell, C.V., et al. (2002). Visualization of Proteus mirabilis within the matrix of urease-induced bladder stones during experimental urinary tract infection. Infection and Immunity, 70, 389-394 doi:10.1128/IAI.70.1.389-394.2002 DOI: https://doi.org/10.1128/IAI.70.1.389-394.2002
Lysy, J., Werczberger, A., Globus, M., et al. (1985). Pneumatocele formation in a patient with Proteus mirabilis pneumonia. Postgraduate Medical Journal, 61, 255-257 doi:10.1136/ pgmj.61.713.255 DOI: https://doi.org/10.1136/pgmj.61.713.255
Malik, Y., Arun, A., Milton, P., Ghatak, S., & Ghosh, S. (2021). Role of Birds in Transmitting Zoonotic Pathogens. Livestock Diseases and Management. Singapore Springer Nature. https://doi.org/10.1007/978-981-16-4554-9. DOI: https://doi.org/10.1007/978-981-16-4554-9
Meshref, A.E., Eldesoukey, I.E., Alouffi, A.S., et al. (2021). Molecular Analysis of Antimicrobial Resistance among Enterobacteriaceae Isolated from Diarrhoeic Calves in Egypt. Animals (Basel), 11, doi:10.3390/ani11061712 DOI: https://doi.org/10.3390/ani11061712
Mitscherlich, E., & Marth, E. (1984). Microbial Survival in the Environment: Bacteria and Rickettsiae Important in Human and Animal Health. Springer-Verlag. doi:10.1002/jobm.3620251017 DOI: https://doi.org/10.1002/jobm.3620251017
Mobley, H.L., & Warren, J.W. (1987). Urease-positive bacteriuria and obstruction of long-term urinary catheters. Journal of Clinical Microbiology, 25, 2216-2217. doi:10.1128/jcm.25.11.2216-2217.1987 DOI: https://doi.org/10.1128/jcm.25.11.2216-2217.1987
Muhammad, B., Diarra, M.S., Islam, M.R., et al. (2022). Effects of litter from antimicrobial-fed broiler chickens on soil bacterial community structure and diversity. Canadian Journal of Microbiology, 68, 643-653 doi:10.1139/cjm-2022-0086 DOI: https://doi.org/10.1139/cjm-2022-0086
Nsofor, C.M., Tattfeng, M.Y., Nsofor, C.A. (2021). High prevalence of qnrA and qnrB genes among fluoroquinolone-resistant Escherichia coli isolates from a tertiary hospital in Southern Nigeria. Bulletin of The National Research Centre, 45, doi:10.1186/s42269-020-00475-w DOI: https://doi.org/10.1186/s42269-020-00475-w
Okonko, I., Nkang, A., Fajobi, E., et al. (2010). Incidence of multidrug resistant (mdr) organisms in some poultry feeds sold in calabar metropolis, Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(3), 514-532.
Oladeinde, A., Abdo, Z., Zwirzitz, B., et al. (2022). Litter Commensal Bacteria Can Limit the Horizontal Gene Transfer of Antimicrobial Resistance to Salmonella in Chickens. Applied and Environmental Microbiology, 88, e0251721. doi:10.1128/ aem.02517-21 DOI: https://doi.org/10.1128/aem.02517-21
Oladeinde, A., Awosile, B., Woyda, R., et al. (2023). Management and environmental factors influence the prevalence and abundance of foodborne pathogens and commensal bacteria in peanut hull-based broiler litter. Poultry Science, 102, 102313 doi:10.1016/j.psj.2022.102313 DOI: https://doi.org/10.1016/j.psj.2022.102313
Olofinsae, S.A., Adeleke, O.E., & Ibeh, B.O. (2022). Occurrence of Pseudomonas lactis and Pseudomonas paralactis Amongst Non-Lactose-Fermenting Bacterial Isolates in Chickens and Their Antimicrobial Resistance Patterns. Microbiology Insights, 15, 11786361221130313. doi:10.1177/11786361221130313 DOI: https://doi.org/10.1177/11786361221130313
Peng, S., Feng, Y., Wang, Y., et al. (2017). Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years. Journal of Hazardous Materials, 340, 16-25. doi:10.1016/j.jhazmat.2017.06.059 DOI: https://doi.org/10.1016/j.jhazmat.2017.06.059
Pilar, A.V.C., Petronella, N., Dussault, F.M., et al. (2020). Similar yet different: phylogenomic analysis to delineate Salmonella and Citrobacter species boundaries. BMC Genomics, 21, 377. doi:10.1186/s12864-020-06780-y. DOI: https://doi.org/10.1186/s12864-020-06780-y
Rafey, A., Nizamuddin, S., Qureshi, W., et al. (2022). Trends of Vancomycin-Resistant Enterococcus Infections in Cancer Patients. Cureus, 14, e31335 doi:10.7759/cureus.31335 DOI: https://doi.org/10.7759/cureus.31335
Rajendiran, S., Veloo, Y., Thahir, S.S.A., et al. (2022). Resistance towards Critically Important Antimicrobials among Enterococcus faecalis and E. faecium in Poultry Farm Environments in Selangor, Malaysia. Antibiotics (Basel), 11 doi:10.3390/antibiotics11081118 DOI: https://doi.org/10.3390/antibiotics11081118
Rauber Wurfel, S.F., Voss-Rech, D., Dos Santos Pozza, J., et al. (2019). Population Dynamics of Thermotolerant Campylobacter in Broilers Reared on Reused Litter. Foodborne Pathogens and Disease, 16, 738-743. doi:10.1089/fpd.2019.2645 DOI: https://doi.org/10.1089/fpd.2019.2645
Retchless, A.C., & Lawrence, J.G. (2010). Phylogenetic incongruence arising from fragmented speciation in enteric bacteria. Proceedings of the National Academy of Sciences. U S A, 107, 11453-11458. doi:10.1073/pnas.1001291107 DOI: https://doi.org/10.1073/pnas.1001291107
Rothrock, M.J., Hiett, K.L., Guard, J.Y. et al. (2016). Antibiotic Resistance Patterns of Major Zoonotic Pathogens from All-Natural, Antibiotic-Free, Pasture-Raised Broiler Flocks in the Southeastern United States. Journal of Environmental Quality, 45, 593-603. doi:10.2134/jeq2015.07.0366 DOI: https://doi.org/10.2134/jeq2015.07.0366
Sanchuki, C., Soccol, C., Carvalho, J., et al. (2011). Evaluation of poultry litter traditional composting process. Brazilian Archives of Biology and Technology, 54, 1053-1058. doi:10.1590/S1516-89132011000500024 DOI: https://doi.org/10.1590/S1516-89132011000500024
Sebastian, S., Tom, A.A., Babu, J.A., et al. (2021). Antibiotic resistance in Escherichia coli isolates from poultry environment and UTI patients in Kerala, India: A comparison study. Comparative Immunology, Microbiology & Infectious Disease, 75, 101614. doi:10.1016/j.cimid.2021.101614 DOI: https://doi.org/10.1016/j.cimid.2021.101614
Simonetti, O., Morroni, G., Ghiselli, R., et al. (2018). In vitro and in vivo activity of fosfomycin alone and in combination with rifampin and tigecycline against Gram-positive cocci isolated from surgical wound infections. Journal of Medical Microbiology, 67, 139-143 doi:10.1099/jmm.0.000649 DOI: https://doi.org/10.1099/jmm.0.000649
Subirats, J., Murray, R., Scott, A., et al. (2020). Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. Science of Total Environment, 746, 141113. doi:10.1016/j.scitotenv.2020.141113 DOI: https://doi.org/10.1016/j.scitotenv.2020.141113
Threlfall, E.J., Ward, L.R., Frost, J.A., et al. (2000). The emergence and spread of antibiotic resistance in foodborne bacteria. International Journal of Food Microbiology, 62, 1-5. doi:10.1016/s0168-1605(00)00351-2 DOI: https://doi.org/10.1016/S0168-1605(00)00351-2
Torok, V.A., Hughes, R.J., Ophel-Keller, K., et al. (2009). Influence of different litter materials on cecal microbiota colonization in broiler chickens. Poultry Science, 88, 2474-2481. doi:10.3382/ps.2008-00381 DOI: https://doi.org/10.3382/ps.2008-00381
Valeris-Chacin, R., Weber, B., Johnson, T.J., et al. (2022). Longitudinal Changes in Campylobacter and the Litter Microbiome throughout the Broiler Production Cycle. Applied and Environmental Microbiology, 88, e0066722. doi:10.1128/aem.00667-22 DOI: https://doi.org/10.1128/aem.00667-22
Wadud, S., Michaelsen, A., Gallagher, E., et al. (2012). Bacterial and fungal community composition over time in chicken litter with high or low moisture content. Brazilian Journal of Poultry Science, 53, 561-569. doi:10.1080/00071668.2012.723802 DOI: https://doi.org/10.1080/00071668.2012.723802
WHO. (2015). WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. World Health Organization; Geneva, Switzerland
WHO. (2018). A Global Overview of National Regulations and Standards for Drinking-Water Quality. World Health Organization; Geneva, Switzerland
Wojcicki, M., Chmielarczyk, A., Swider, O., et al. (2022). Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens, 11, doi:10.3390/pathogens11111323 DOI: https://doi.org/10.3390/pathogens11111323
Woyda, R., Oladeinde, A., & Abdo, Z. (2023). Chicken Production and Human Clinical Escherichia coli Isolates Differ in Their Carriage of Antimicrobial Resistance and Virulence Factors. Applied and Environmental Microbiology, 89, e0116722. doi:10.1128/aem.01167-22 DOI: https://doi.org/10.1128/aem.01167-22
Wu, L.T., Wu, H.J., Chung, J.G., et al. (2006). Dissemination of Proteus mirabilis isolates harboring CTX-M-14 and CTX-M-3 beta-lactamases at 2 hospitals in Taiwan. Diagnostic Microbiology and Infectious Disease, 54, 89-94. doi:10.1016/ j.diagmicrobio.2005.09.005 DOI: https://doi.org/10.1016/j.diagmicrobio.2005.09.005
Zhou, X., Willems, R.J.L., Friedrich, A.W., et al. (2020). Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrobial Resistance & Infection Control, 9, 130. doi:10.1186/s13756-020-00770-1 DOI: https://doi.org/10.1186/s13756-020-00770-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.