Optimization of protein extraction from "Cam" rice bran by response surface methodology

Authors

  • Le Thi Kim Loan Department of Agriculture and Food Technology, Tien Giang University, Tien Giang, VietNam
  • Quoc Ha Minh National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
  • Thuy Nguyen Minh Department of Food Technology, College of Agriculture, Can Tho University, Can Tho, Vietnam https://orcid.org/0000-0003-3927-9099
  • Nguyen Thanh Nhung Agricultural Genetics Institute, Hanoi, Vietnam
  • Tran Dang Xuan Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan https://orcid.org/0000-0001-7103-5698
  • Vu Xuan Duong Institute of Applied Research and Development, Hung Vuong University, Phu Tho 290000, Vietnam
  • Khuat Huu Trung Agricultural Genetics Institute, Hanoi, Vietnam
  • Le Hoang Nhat Minh Department of Life Sciences, University of Science and Technology of Hanoi, Hanoi, Vietnam
  • Tran Dang Khanh Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam https://orcid.org/0000-0003-4426-7121
  • Tran Thi Thu Ha Institute of Forestry and Sustainable Development (IFS), Thai Nguyen University of Agriculture and Forestry, Vietnam

DOI:

https://doi.org/10.18006/2023.11(2).290.296

Keywords:

Rice bran, Protein content, Optimization, Nutritional value

Abstract

"Cam" rice bran was considered a waste product from rice, which is rich in natural compounds and protein owing to its outstanding nutritional value. This study aimed to establish an optimization model for extracting protein from rice bran, with two responses: extraction yield (%) and protein content (%). The variable parameters included were pH (8.5-9.5), stirring time (3.5-4.5 h), and enzyme incubation temperature (85-95°C). The coefficient of determination for both models were above 0.95, indicating a high correlation between the actual and estimated values. The maximum extraction yield and protein content were achieved when the conditions were set at pH of 9.02, stirring time of 4.02 h, and extraction temperature of 90.6°C. Under these optimum conditions, the predicted protein extracted from rice bran was 43.03% (moisture <13.0%), with an extraction yield of 15.9%. The findings of this study suggested that this protocol can enhance the utilization of rice bran and might be employed on a large scale in the food industry to exploit the nutritional source.

References

Acton, Q.A. (2013). Amylases – Advances in Research and Application. Scholarly Editions, Atlanta, Georgia.

Ahlström, C., Thuvander, J., Rayner, M., Matos, M., Gutiérrez, G., & Östbring, K. (2022). The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake. Molecules, 27(9), 2957 DOI: https://doi.org/10.3390/molecules27092957

AOAC. (2005). Protein (crude) in animal feed and pet food (Copper Catalyst), Method AOAC 2001.11. In: Official methods of analysis, 18th Edition, AOAC International Publisher Inc. Gaithersburg.

Boonla, O., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P., & Thawornchinsombut, S. (2015). Peptides derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients, 7(7), 5783-5799. DOI: https://doi.org/10.3390/nu7075252

Canan, C., Cruz, F.T.L., Delaroza, F., Casagrande, R., Sarmento, C.P.M., Shimokomaki, M., & Ida, E.I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition Analysis, 24(7),1057-1063. DOI: https://doi.org/10.1016/j.jfca.2010.12.014

Chich, B.H., Ninh, D.V., & Boi, V.N. (2014). Investigation of Termamyl 120L properties on carrageenan substrate from Kappaphycus alvarezii (Doty). Journal of Fisheries-Science & Technology, Nha Trang University, 3,16-20.

Chiou, T.Y., Kobayashi, T., & Adachi, S. (2013). Characteristics and antioxidative activity of the acetone-soluble and-insoluble fractions of a defatted rice bran extract obtained by using an aqueous organic solvent under subcritical conditions. Bioscience, Biotechnology, and Biochemistry, 77(3), 624-630. DOI: https://doi.org/10.1271/bbb.120858

Eng, H. Y., & Mohd Rozalli, N. H. (2022). Rice bran and its constituents: Introduction and potential food uses. International Journal of Food Science & Technology, 57(7), 4041-4051. DOI: https://doi.org/10.1111/ijfs.15808

Eze, O. F., Chatzifragkou, A., & Charalampopoulos, D. (2022). Properties of protein isolates extracted by ultrasonication from soybean residue (okara). Food Chemistry, 368, 130837. DOI: https://doi.org/10.1016/j.foodchem.2021.130837

Guan, J., Takai, R., Toraya, K., Ogawa, T., Muramoto, K., Mohri, S., Ishikawa, D., Fujii, T., Chi, H., & Cho, S.J. (2017). Effects of alkaline deamidation on the chemical properties of rice bran protein. Food Science and Technology Research, 23(5), 697-704. DOI: https://doi.org/10.3136/fstr.23.697

Hou, F., Ding, W., Qu, W., Oladejo, A.O., Xiong, F., Zhang, W., He, R., & Ma, H. (2017). Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chemistry, 218, 207-15. DOI: https://doi.org/10.1016/j.foodchem.2016.09.064

Hue, H.T., Nghia, L.T., Minh, H.T., Anh, L.H., Trang, L.T.T., & Khanh, T.D. (2018). Evaluation of Genetic Diversity of Local-Colored Rice Landraces Using SSR Markers. International Letters of Natural Science, 67, 24–34. DOI: https://doi.org/10.18052/www.scipress.com/ILNS.67.24

Jouanneau, D., Boulenguer, P., Mazoyer, J., & Helbert, W. (2010). Enzymatic degradation of hybrid ι-/ν-carrageenan by Alteromonas fortis ι-carrageenase. Carbohydrate Research, 345(7), 934-40. DOI: https://doi.org/10.1016/j.carres.2010.02.014

Kaur, S., Kumar, K., Singh, L., Sharanagat, V. S., Nema, P. K., Mishra, V., & Bhushan, B. (2022). Gluten-free grains: Importance, processing and its effect on quality of gluten-free products. Critical Reviews in Food Science and Nutrition, 1-28. DOI: https://doi.org/10.1080/10408398.2022.2119933

Kushwaha, U.K. (2016). Black Rice: Research, history and development. Springer. DOI: https://doi.org/10.1007/978-3-319-30153-2 DOI: https://doi.org/10.1007/978-3-319-30153-2

Loan, L.T.K., & Thuy, N.M. (2019). Optimization of germination process of "Cam" brown rice by response surface methodology and evaluation of germinated rice quality. Food Research, 4(2), 1-9. DOI: https://doi.org/10.26656/fr.2017.4(2).307.1

Luong, N.D. (2014). Enzyme technology. Ho Chi Minh National University Publisher.

Majzoobi, M., Sharifi, S., Imani, B., & Farahnaky, A. (2013). The effect of particle size and level of rice bran on the batter and sponge cake properties. Journal of Agricultural Science and Technology, 15(6),1175- 1184.

Mittal, R., & Ranade, V. V. (2023). Intensifying extraction of biomolecules from macroalgae using vortex based hydrodynamic cavitation device. Ultrasonics Sonochemistry, 94, 106347 DOI: https://doi.org/10.1016/j.ultsonch.2023.106347

Ngoc, N.T.L., Duy, L.N.D., & Ha, N.C. (2019). Study on the enzymatic hydrolysis of rice bran protein used in bacterial culture Bacillus subtilis. Science Journal of Can Tho University, 55(2),267-275. DOI: https://doi.org/10.22144/ctu.jsi.2019.070

Nourmohammadi, N., Austin, L., & Chen, D. (2023). Protein-based fat replacers: a focus on fabrication methods and fat-mimic mechanisms. Foods, 12(5), 957. DOI: https://doi.org/10.3390/foods12050957

Pengkumsri, N., Chaiyasut, C., Saenjum, C., Sirilun, S., Peerajan, S., Suwannalert, P., Sirisattha, S. (2015). Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Science and Technology, 35, 331-338. DOI: https://doi.org/10.1590/1678-457X.6573

Phongthai, S., Lim, S.T.,&Rawdkuen, S. (2017). Ultrasonic‐assisted extraction of rice bran protein using response surface methodology. Journal of Food Biochemistry, 41(2), e12314. DOI: https://doi.org/10.1111/jfbc.12314

Phuong, N.T.M., Bac, V.H., Nhung, T.T., & Hiep, D.H. (2015). Research on protein recovery from rice bran. Biology Journal, 37(4),479-486.

Shen, L., Wang, X., Wang, Z., Wu, Y., & Chen, J (2008). Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry,107(2),929-38. DOI: https://doi.org/10.1016/j.foodchem.2007.08.047

Shoji, Y., Mita, T., Isemura, M., Mega, T., Hase, S., Isemura, S., & Aoyagi, Y. (2001). A fibronectin-binding protein from rice bran with cell adhesion activity for animal tumor cells. Bioscience, Biotechnology, and Biochemistry, 65(5),1181-1186. DOI: https://doi.org/10.1271/bbb.65.1181

Silventoinen, P., Rommi, K., Holopainen-Mantila, U., Poutanen, K., & Nordlund, E. (2019). Biochemical and techno-functional properties of protein-and fibre-rich hybrid ingredients produced by dry fractionation from rice bran. Food Bioprocess Technology,12(9),1487-99. DOI: https://doi.org/10.1007/s11947-019-02307-w

Tang, S., Hettiarachchy, N.S., & Shellhammer, T.H. (2002). Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. Journal of Agricultural and Food Chemistry, 50(25), 7444-7448. DOI: https://doi.org/10.1021/jf025771w

Theerakulkait, C., Chaiseri, S. & Mongkolkanchanasiri, S. (2006). Extraction and Some Functional Properties of Protein Extract from Rice Bran. Kasetsart Journal : Natural Science, 40, 209-214.

Thuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022c). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis) Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. DOI: https://doi.org/10.3390/horticulturae8121199

Thuy, N. M., Tan, H. M., & Van Tai, N. (2022b). Optimization of ingredient levels of reduced-calorie blackberry jam using response surface methodology. Journal of Applied Biology and Biotechnology, 10(1), 68-75.

Thuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022a). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. DOI: https://doi.org/10.3390/molecules27238570

Van Tai, N., Linh, M. N., & Thuy, N. M. (2021). Optimization of extraction conditions of phytochemical compounds in "Xiem” banana peel powder using response surface methodology. Journal of Applied Biology and Biotechnology, 9(6), 56-62. DOI: https://doi.org/10.7324/JABB.2021.9607

Veni, B.K. (2019). Nutrition profiles of different colored rice: A review. Journal of Pharmacognosy and Phytochemistry, 2, 303-305.

Wang, L., Wang, Y., Qin, Y., Liu, B., & Zhou, Y. (2022). Extraction and determination of protein from edible oil using aqueous biphasic systems of ionic liquids and salts. Food and Bioprocess Technology, 15, 190-202. DOI: https://doi.org/10.1007/s11947-021-02738-4

Wang, T., Zhang, H., Wang, L., Wang, R., & Chen, Z.(2015). Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chemistry, 178, 82-88. DOI: https://doi.org/10.1016/j.foodchem.2015.01.057

Zhang, J., Ström, A., Bordes, R., Alminger, M., Undeland, I., & Abdollahi, M. (2023). Radial discharge high shear homogenization and ultrasonication assisted pH-shift processing of herring co-products with antioxidant-rich materials for maximum protein yield and functionality. Food Chemistry, 400, 133986. DOI: https://doi.org/10.1016/j.foodchem.2022.133986

Downloads

Published

2023-04-30

How to Cite

Loan, L. T. K., Minh, Q. H., Minh, T. N., Nhung, N. T., Xuan, T. D., Duong, V. X., Trung, K. H., Minh, L. H. N., Khanh, T. D., & Thu Ha, T. T. (2023). Optimization of protein extraction from "Cam" rice bran by response surface methodology. Journal of Experimental Biology and Agricultural Sciences, 11(2), 290–296. https://doi.org/10.18006/2023.11(2).290.296

Issue

Section

RESEARCH ARTICLES

Categories