Optimization of protein extraction from "Cam" rice bran by response surface methodology
DOI:
https://doi.org/10.18006/2023.11(2).290.296Keywords:
Rice bran, Protein content, Optimization, Nutritional valueAbstract
"Cam" rice bran was considered a waste product from rice, which is rich in natural compounds and protein owing to its outstanding nutritional value. This study aimed to establish an optimization model for extracting protein from rice bran, with two responses: extraction yield (%) and protein content (%). The variable parameters included were pH (8.5-9.5), stirring time (3.5-4.5 h), and enzyme incubation temperature (85-95°C). The coefficient of determination for both models were above 0.95, indicating a high correlation between the actual and estimated values. The maximum extraction yield and protein content were achieved when the conditions were set at pH of 9.02, stirring time of 4.02 h, and extraction temperature of 90.6°C. Under these optimum conditions, the predicted protein extracted from rice bran was 43.03% (moisture <13.0%), with an extraction yield of 15.9%. The findings of this study suggested that this protocol can enhance the utilization of rice bran and might be employed on a large scale in the food industry to exploit the nutritional source.
References
Acton, Q.A. (2013). Amylases – Advances in Research and Application. Scholarly Editions, Atlanta, Georgia.
Ahlström, C., Thuvander, J., Rayner, M., Matos, M., Gutiérrez, G., & Östbring, K. (2022). The Effect of Precipitation pH on Protein Recovery Yield and Emulsifying Properties in the Extraction of Protein from Cold-Pressed Rapeseed Press Cake. Molecules, 27(9), 2957 DOI: https://doi.org/10.3390/molecules27092957
AOAC. (2005). Protein (crude) in animal feed and pet food (Copper Catalyst), Method AOAC 2001.11. In: Official methods of analysis, 18th Edition, AOAC International Publisher Inc. Gaithersburg.
Boonla, O., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P., & Thawornchinsombut, S. (2015). Peptides derived from Thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients, 7(7), 5783-5799. DOI: https://doi.org/10.3390/nu7075252
Canan, C., Cruz, F.T.L., Delaroza, F., Casagrande, R., Sarmento, C.P.M., Shimokomaki, M., & Ida, E.I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition Analysis, 24(7),1057-1063. DOI: https://doi.org/10.1016/j.jfca.2010.12.014
Chich, B.H., Ninh, D.V., & Boi, V.N. (2014). Investigation of Termamyl 120L properties on carrageenan substrate from Kappaphycus alvarezii (Doty). Journal of Fisheries-Science & Technology, Nha Trang University, 3,16-20.
Chiou, T.Y., Kobayashi, T., & Adachi, S. (2013). Characteristics and antioxidative activity of the acetone-soluble and-insoluble fractions of a defatted rice bran extract obtained by using an aqueous organic solvent under subcritical conditions. Bioscience, Biotechnology, and Biochemistry, 77(3), 624-630. DOI: https://doi.org/10.1271/bbb.120858
Eng, H. Y., & Mohd Rozalli, N. H. (2022). Rice bran and its constituents: Introduction and potential food uses. International Journal of Food Science & Technology, 57(7), 4041-4051. DOI: https://doi.org/10.1111/ijfs.15808
Eze, O. F., Chatzifragkou, A., & Charalampopoulos, D. (2022). Properties of protein isolates extracted by ultrasonication from soybean residue (okara). Food Chemistry, 368, 130837. DOI: https://doi.org/10.1016/j.foodchem.2021.130837
Guan, J., Takai, R., Toraya, K., Ogawa, T., Muramoto, K., Mohri, S., Ishikawa, D., Fujii, T., Chi, H., & Cho, S.J. (2017). Effects of alkaline deamidation on the chemical properties of rice bran protein. Food Science and Technology Research, 23(5), 697-704. DOI: https://doi.org/10.3136/fstr.23.697
Hou, F., Ding, W., Qu, W., Oladejo, A.O., Xiong, F., Zhang, W., He, R., & Ma, H. (2017). Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chemistry, 218, 207-15. DOI: https://doi.org/10.1016/j.foodchem.2016.09.064
Hue, H.T., Nghia, L.T., Minh, H.T., Anh, L.H., Trang, L.T.T., & Khanh, T.D. (2018). Evaluation of Genetic Diversity of Local-Colored Rice Landraces Using SSR Markers. International Letters of Natural Science, 67, 24–34. DOI: https://doi.org/10.18052/www.scipress.com/ILNS.67.24
Jouanneau, D., Boulenguer, P., Mazoyer, J., & Helbert, W. (2010). Enzymatic degradation of hybrid ι-/ν-carrageenan by Alteromonas fortis ι-carrageenase. Carbohydrate Research, 345(7), 934-40. DOI: https://doi.org/10.1016/j.carres.2010.02.014
Kaur, S., Kumar, K., Singh, L., Sharanagat, V. S., Nema, P. K., Mishra, V., & Bhushan, B. (2022). Gluten-free grains: Importance, processing and its effect on quality of gluten-free products. Critical Reviews in Food Science and Nutrition, 1-28. DOI: https://doi.org/10.1080/10408398.2022.2119933
Kushwaha, U.K. (2016). Black Rice: Research, history and development. Springer. DOI: https://doi.org/10.1007/978-3-319-30153-2 DOI: https://doi.org/10.1007/978-3-319-30153-2
Loan, L.T.K., & Thuy, N.M. (2019). Optimization of germination process of "Cam" brown rice by response surface methodology and evaluation of germinated rice quality. Food Research, 4(2), 1-9. DOI: https://doi.org/10.26656/fr.2017.4(2).307.1
Luong, N.D. (2014). Enzyme technology. Ho Chi Minh National University Publisher.
Majzoobi, M., Sharifi, S., Imani, B., & Farahnaky, A. (2013). The effect of particle size and level of rice bran on the batter and sponge cake properties. Journal of Agricultural Science and Technology, 15(6),1175- 1184.
Mittal, R., & Ranade, V. V. (2023). Intensifying extraction of biomolecules from macroalgae using vortex based hydrodynamic cavitation device. Ultrasonics Sonochemistry, 94, 106347 DOI: https://doi.org/10.1016/j.ultsonch.2023.106347
Ngoc, N.T.L., Duy, L.N.D., & Ha, N.C. (2019). Study on the enzymatic hydrolysis of rice bran protein used in bacterial culture Bacillus subtilis. Science Journal of Can Tho University, 55(2),267-275. DOI: https://doi.org/10.22144/ctu.jsi.2019.070
Nourmohammadi, N., Austin, L., & Chen, D. (2023). Protein-based fat replacers: a focus on fabrication methods and fat-mimic mechanisms. Foods, 12(5), 957. DOI: https://doi.org/10.3390/foods12050957
Pengkumsri, N., Chaiyasut, C., Saenjum, C., Sirilun, S., Peerajan, S., Suwannalert, P., Sirisattha, S. (2015). Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Science and Technology, 35, 331-338. DOI: https://doi.org/10.1590/1678-457X.6573
Phongthai, S., Lim, S.T.,&Rawdkuen, S. (2017). Ultrasonic‐assisted extraction of rice bran protein using response surface methodology. Journal of Food Biochemistry, 41(2), e12314. DOI: https://doi.org/10.1111/jfbc.12314
Phuong, N.T.M., Bac, V.H., Nhung, T.T., & Hiep, D.H. (2015). Research on protein recovery from rice bran. Biology Journal, 37(4),479-486.
Shen, L., Wang, X., Wang, Z., Wu, Y., & Chen, J (2008). Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry,107(2),929-38. DOI: https://doi.org/10.1016/j.foodchem.2007.08.047
Shoji, Y., Mita, T., Isemura, M., Mega, T., Hase, S., Isemura, S., & Aoyagi, Y. (2001). A fibronectin-binding protein from rice bran with cell adhesion activity for animal tumor cells. Bioscience, Biotechnology, and Biochemistry, 65(5),1181-1186. DOI: https://doi.org/10.1271/bbb.65.1181
Silventoinen, P., Rommi, K., Holopainen-Mantila, U., Poutanen, K., & Nordlund, E. (2019). Biochemical and techno-functional properties of protein-and fibre-rich hybrid ingredients produced by dry fractionation from rice bran. Food Bioprocess Technology,12(9),1487-99. DOI: https://doi.org/10.1007/s11947-019-02307-w
Tang, S., Hettiarachchy, N.S., & Shellhammer, T.H. (2002). Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. Journal of Agricultural and Food Chemistry, 50(25), 7444-7448. DOI: https://doi.org/10.1021/jf025771w
Theerakulkait, C., Chaiseri, S. & Mongkolkanchanasiri, S. (2006). Extraction and Some Functional Properties of Protein Extract from Rice Bran. Kasetsart Journal : Natural Science, 40, 209-214.
Thuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022c). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis) Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. DOI: https://doi.org/10.3390/horticulturae8121199
Thuy, N. M., Tan, H. M., & Van Tai, N. (2022b). Optimization of ingredient levels of reduced-calorie blackberry jam using response surface methodology. Journal of Applied Biology and Biotechnology, 10(1), 68-75.
Thuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022a). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. DOI: https://doi.org/10.3390/molecules27238570
Van Tai, N., Linh, M. N., & Thuy, N. M. (2021). Optimization of extraction conditions of phytochemical compounds in "Xiem” banana peel powder using response surface methodology. Journal of Applied Biology and Biotechnology, 9(6), 56-62. DOI: https://doi.org/10.7324/JABB.2021.9607
Veni, B.K. (2019). Nutrition profiles of different colored rice: A review. Journal of Pharmacognosy and Phytochemistry, 2, 303-305.
Wang, L., Wang, Y., Qin, Y., Liu, B., & Zhou, Y. (2022). Extraction and determination of protein from edible oil using aqueous biphasic systems of ionic liquids and salts. Food and Bioprocess Technology, 15, 190-202. DOI: https://doi.org/10.1007/s11947-021-02738-4
Wang, T., Zhang, H., Wang, L., Wang, R., & Chen, Z.(2015). Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment. Food Chemistry, 178, 82-88. DOI: https://doi.org/10.1016/j.foodchem.2015.01.057
Zhang, J., Ström, A., Bordes, R., Alminger, M., Undeland, I., & Abdollahi, M. (2023). Radial discharge high shear homogenization and ultrasonication assisted pH-shift processing of herring co-products with antioxidant-rich materials for maximum protein yield and functionality. Food Chemistry, 400, 133986. DOI: https://doi.org/10.1016/j.foodchem.2022.133986
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.