Effect of Transpiration on the Monocot Ornamental Plants Leave Anatomy
DOI:
https://doi.org/10.18006/2023.11(3).598.611Keywords:
Transpiration, Leaf anatomy thickness, Palisade, Spongy, ShrinkageAbstract
Transpiration refers to the loss of water from leaves, and increased levels can lead to changes in leaf morphology and anatomy, affecting the total thickness. This study aims to determine the effect of transpiration on leaf anatomy, particularly thickness, in six types of monocots ornamental plants, namely Rhoeo discolor (L'Her.) Hance ex Walp., Hymenocallis littoralis (Jacq.) Salisb., Cordyline fruticosa (L.) A. Chev., Chlorophytum laxum R. Br, Dracaena reflexa Lam, and Aglaonema commutatum Schott. The study procedures were conducted using a Factorial Completely Randomized Design (Factorial CRD) with an experimental approach. The first factor was the type of plant, while the second was the condition before and after transpiration. The data obtained were analyzed using ANOVA, followed by LSD and Pearson correlation tests. The results showed that the plant type factor significantly affected the thickness of leaf tissues. The conditions before and after transpiration also significantly impacted all leaf tissues except for the lower epidermis. Furthermore, this finding was supported by the positive correlation between the thickness shrinkage of the upper epidermis-mesophyll and transpiration. The results also revealed that the mesophyll of R. discolor, C. laxum, D. reflexa, and A. commutatum differentiated into palisade and spongy layers, but there was no differentiation in the other two species. The transpiration rate was observed to change along with the specific anatomical structure of the leaf tissues. The lowest rate was found in R. discolor with thicker hypodermis tissue, while the highest was in C. laxum with thinner mesophyll.
References
Agurla, S., Gahir, S., Munemasa, S., Murata., & Y., Raghavendra, A.S. (2018). Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Advances in Experimental Medicine and Biology, 1081, 215-232. DOI: 10.1007/978-981-13-1244-1_12. DOI: https://doi.org/10.1007/978-981-13-1244-1_12
Amruddin, Priyanda, R., Agustina, T.S., Ariantini, N.S., et al. (2022). Metode Penelitian Kuantitatif. Pradina Pustaka.
Asthon, P.M.S., & Berlyn, G.P. (1992). Leaf Adaptation of Some Shorea Species to Sun and Shade. New Phytologist Foundation, 121(4), 587-596. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb01130.x. DOI: https://doi.org/10.1111/j.1469-8137.1992.tb01130.x
Bahadur, S., Ahmad, M., Zafar, M., Sultana, S., et al. (2018). Palyno-Anatomical Studies of Monocot Taxa and its Taxonomic Implications Using Light and Scanning Electron Microscopy. Microscopy Research Technique, 82(4), 1-21. DOI: 10.1002/jemt.23179. DOI: https://doi.org/10.1002/jemt.23179
Beck, C. B. (2010). An Introduction to Plant Structure and Development Plant Anatomy for the Twenty-First (2nd ed). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511844683
Beckman, C. H. (1964). Host Responses to Vascular Infection. Annual Review of Pgytopathology, 2, 231-252. DOI: https://doi.org/10.1146/annurev.py.02.090164.001311. DOI: https://doi.org/10.1146/annurev.py.02.090164.001311
Becraft, P.W. (1999). Development of the Leaf Epidermis. Developmental Biology, 45, 1-40. DOI: https://doi.org/10.1016/ S0070-2153(08)60313-0. DOI: https://doi.org/10.1016/S0070-2153(08)60313-0
Berlyn, J. P., & Miksche, J.P. (1976). Microtechnique Cytochemishtry. Lowa State University Press.
Bertel, C., Schönswetter, P., Frajman, B., & Holzinger, A. (2016). Leaf Anatomy of Two Reciprocally non-monophyletic Mountain Plant (Heliosperma spp.): does heritable adaptaions to divergent growing sites accompany the onset of Speciation?. Protoplasma, 254(3), 1411–1420. DOI: https://doi.org/10.1007/s00709-016-1032-5. DOI: https://doi.org/10.1007/s00709-016-1032-5
Bosabalidis, A. M., & Kofidis, G. (2002). Comparative Effects of Drought Stress on Leaf Anatomy of Two Olive Cultivars. Plant Science, 163(2), 375-379. DOI: https://doi.org/10.1016/S0168-9452(02)00135-8. DOI: https://doi.org/10.1016/S0168-9452(02)00135-8
Boughalleb, F., Abdellaoui, R., Ben-Brahim, N., & Neffati, M. (2014). Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 9(12), 1215-1225. DOI: 10.2478/s11535-014-0353-7. DOI: https://doi.org/10.2478/s11535-014-0353-7
Buckley, T. N., John, G.P., Scoffoni, C., Lawren, T. (2015). How Does Leaf Anatomy Influence Water Transport Outside The Xylem?. Plant Physiology, 168(4), 1616-1635. DOI: https://doi.org/10.1104/pp.15.00731. DOI: https://doi.org/10.1104/pp.15.00731
Budel, J. M., Raman, J., Monteiro, L. M., Almeida,V. P., et al. (2017). Foliar anatomy and microscopy of six Brazilian species of Baccharis (Asteraceae). Miscrocopy Research and Techenique, 81(8), 832-842. DOI:https://doi.org/10.1002/jemt.23045. DOI: https://doi.org/10.1002/jemt.23045
Burnett , S., Pennisi, S., Thomas, P.A., & Iersel, M.W. (2005). Controlled Drought Affects Morphology and Anatomy of Salvia splendens. Journal of the American Society for Horticultural Science, 130(5), 775-781. DOI: https://doi.org/10.21273/ JASHS.130.5.775. DOI: https://doi.org/10.21273/JASHS.130.5.775
Burquez, A. (1987). Leaf Thickness and Water Deficit in Plants: A Tool for Field Studies. Journal of Experimental Botany, 38(186), 109-114, DOI: https://doi.org/10.1093/jxb/38.1.109. DOI: https://doi.org/10.1093/jxb/38.1.109
Canny, M., Wong, S.C., Huang, C., & Miller, C. (2012). Differential Shrinkage of Mesophyll Cells in Transpiring Cooton Leaves: Implications for Static and Dynamic Polls of Water, and for Water Transport Pathways. Functional Plant Biology, 39(2), 91-102. DOI: http://dx.doi.org/10.1071/FP11172. DOI: https://doi.org/10.1071/FP11172
Canny, M.J., & Huang, C. X. (2005). Leaf Water Content and Palisade Cell Size. New Phytologist Foundation, 170(1), 75-85. DOI: https://doi.org/10.1111/j.1469-8137.2005.01633.x. DOI: https://doi.org/10.1111/j.1469-8137.2005.01633.x
Carr, M.K.V. (2013). The Water Relations and Irrigation Requirements of Olive (Olea europaea L.): a Review. Experimental Agriculture, 49(04), 1-43. DOI: 10.1017/S0014479713000276. DOI: https://doi.org/10.1017/S0014479713000276
Cassola, F., Silva, M.H.R., Borghi, A.A., Lusa, M.G., Sawaya, A.C.H.F., Garcia, V.L., & Mayer, J.L.S. (2019). Morphoanatomical Characteristics, Chemical Profiles, and Antioxidant Activity of Three Species of Justicia L. (Acanthaceae) Under Different Growth Conditions. Industrial Crops & Products, 131, 257-265. DOI: https://doi.org/10.1016/j.indcrop.2019.01.053. DOI: https://doi.org/10.1016/j.indcrop.2019.01.053
Chatri, M., Mella, C. E., & Des, M. (2020). Characteristics of Leaves Anatomy of Some Syzigium (Myrtaceae). International Conference on Biology, Sciences and Education (ICoBioSE 2019). DOI: 10.2991/absr.k.200807.005. DOI: https://doi.org/10.2991/absr.k.200807.005
Coble, A.P., & Cavaleri, M. A. (2017). Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness. Tree Physiology, 37(10), 1337-1551. DOI: https://doi.org/10.1093/treephys/tpx016. DOI: https://doi.org/10.1093/treephys/tpx016
Coneva, V., & Chitwood, D. H. (2018). Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype. Frontiers in plant science, 9, 322. https://doi.org/10.3389/fpls.2018.00322. DOI: https://doi.org/10.3389/fpls.2018.00322
Crang, R., Lyons-Sobaski, S., & Wise, R. (2018). Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-77315-5. DOI: https://doi.org/10.1007/978-3-319-77315-5
Cutler, D. F., Botha, T., & Stevenson, D. W. (2007). Plant Anatomy an Applied Approach. Blackwell Publishing.
Da Costa Santos, J. V., De Oliveira, M. F. V., Santos Filho, F. S., Dos Santos Silva, L. N.N., & Silva Araujo, J. S. (2020). The Taxonomic Value of Leaf Anatomy for Species Byrsonima: a Difficult genus of Malpighiaceae Juss. Acta Botanica Brasilica, 34(3), 570-579. DOI: 10.1590/0102-33062020abb0144 . DOI: https://doi.org/10.1590/0102-33062020abb0144
Da Costa, Y.O., & Daningsih, E. (2022). Ketebalan Daun dan Laju Transpirasi pada Tanaman Hias Dikotil. Jurnal Ilmu Pertanian Indonesia, 27(1). 40-47. DOI: 0.18343/jipi.27.1.40. DOI: https://doi.org/10.18343/jipi.27.1.40
Daningsih E., Mardiyyaningsih, A. N., Da Costa, Y. O., Primawati, R., & Karlina, S. (2022). Changes of stomatal distribution and leaf thickness in response to transpiration rate in six dicot plant species. IOP Conference. Series: Earth and Environmental Science. DOI: 10.1088/1755-1315/976/1/012060 DOI: https://doi.org/10.1088/1755-1315/976/1/012060
Das, S., (1999). An adaptive feature of some mangroves of Sundarbans, West Bengal. Journal of Plant Biology. 42(2), 109-116. DOI: https://doi.org/10.1007/BF03031018. DOI: https://doi.org/10.1007/BF03031018
EL-Gawad, A. M. A., & El-Amier, Y. (2017). Anatomical features of three perennial swampy plants of Poaceae, grown on the water stream banks in Nile Delta, Egypt. Journal of Medicional Botanny, 1, 58-64. DOI: https://doi.org/10.25081/jmb.2017.v1.863. DOI: https://doi.org/10.25081/jmb.2017.v1.863
Fahn, A. (1995). Anatomi Tumbuhan. Edisi Ketiga. Terjemahan: Ahmad Soediarto, Trenggono Koesoemaningrat, Machmud Natasaputra dan Hilda Akmal. Gadjah Mada University Press.
Fanourakis, D., Heuveluink. EP., & Carvalho, S.M.P. (2013). A Comprehensive Analysis of The Physiological and Anatomical Components Involved in Higher Water Loss Rates After Leaf Development at High Humidity. Journal of Plant Physiology. 170(10), 890–898. DOI: https://doi.org/10.1016/j.jplph.2013.01.013. DOI: https://doi.org/10.1016/j.jplph.2013.01.013
Galmes, J., Ochogavia, J. M., Gago, J., Roldan, E, J., Cifre, J., & Conesa, M.A. (2013). Leaf Responses to Drought Stress in Mediterranean Accesions of Solanum lycopersicum: Anatomical Adaptations in Relation to Gas Exchange Parameters. Plant, Cell, & Environtment, 36, 920-935. DOI: 10.1111/pce.12022. DOI: https://doi.org/10.1111/pce.12022
Gao, K., Santamaouris, M., & Feng, J. (2020) On the Efficiency of Using Transpiration Cooling to Mitigate Urban Heat. Climate, 8(69), 2-16. DOI: https://doi.org/10.3390/cli8060069. DOI: https://doi.org/10.3390/cli8060069
Giulani, R., Koteyeva, N., Voznesenskaya, E., Evans, M. A., Cousins, A. B., & Edwards, G. E. (2013). Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza). Plant Physiology, 162(2), 1632-1651. DOI: https://doi.org/10.1104/pp.113.217497. DOI: https://doi.org/10.1104/pp.113.217497
Griffiths H., & Males J. (2017). Succulent Plants. Current Biology, 27(17), R890-R896. DOI: https://doi.org/10.1016/j.cub.2017.03.021. DOI: https://doi.org/10.1016/j.cub.2017.03.021
Hafiz, P., Dorly., & Rahayu, S. (2013). Karakteristik Anatomi Daun dari Sepuluh Spesies Hoya Sukulen Serta Analisis Hubungan Kekerabatannya. Buletin Kebun Raya, 16(1), 58-73. DOI: 10.14203/bkr.v16i1.27.
Hameed, M., Batool, S., Nas, N., Nawaz, T., Ashraf, M. (2012). Leaf Structural Modification for drought tolerance in some differentially adapted ecotype of blue panic (Panicumantidotale Retz.). Acta Physiologiae Plantarum, 34(4), 1479-1491. DOI: 0.1007/s11738-012-0946-6. DOI: https://doi.org/10.1007/s11738-012-0946-6
Han, Ji-Mei., Meng, Hao-Feng., Wang, Sai-Yu., Jiang, Chuang-Dao., Li, F., Zhang, Wang-Feng., & Zhang, Ya-Li. (2016). Variability of mesophyll conductance and its relationship with water loss use effiecency in cotton leaves under drought pretreatment. Journal of Plant Physiology, 194, 61-71. DOI: https://doi.org/10.1016/j.jplph.2016.03.014. DOI: https://doi.org/10.1016/j.jplph.2016.03.014
Hidayat, E. B., & Niksololihin, S. (1995). Anatomi Tumbuhan Berbiji. Penerbit ITB
Hopkins, W. G., &Huner, N. P. A. (2009). Introduction to Plant Physiology Fourth Edition. New Jersey: John Wiley & Sons, Inc.
Hsieh, C. (2017). Effects Of Tree Shading and Transpiration on Building Cooling Energy Use. Energy and Buildings, 159, 382-397. DOI: https://doi.org/10.1016/j.enbuild.2017.10.045. DOI: https://doi.org/10.1016/j.enbuild.2017.10.045
Johansen, D.A. (1940). Plant Microtechnique. McGraw-Hill Book Company Incorporation
Kapchina-Toteva, V., Dimitrovaa, M. A., Stefanova, M., Koleva, D., Kostov, K., Yordanova, Z.P. (2014). Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. Journal of Plant Physiology, 171, 1344-1353. DOI: http://dx.doi.org/10.1016/j.jplph.2014.05.010. DOI: https://doi.org/10.1016/j.jplph.2014.05.010
Kocchar, S.L & Gujral, S. K. (2020). Plant Physiology Second Edition. Cambridge University Press
Kocyigit, M., Salmeri, C., Ozhatay, N., Kaya, E., & Brullo, S. (2023). Allium sphaeronixum (Amaryllidaceae), A New Species from Turkey. Plants, 12(11), 1-19 DOI: https://doi.org/10.3390/ plants12112074 DOI: https://doi.org/10.3390/plants12112074
Kuiper, P. J. C. (1961). The Effect of Environmental Factors on The Transpiration of Leaves, With Special Reference to Stomatal Light Response. PhD thesis submitted to the Wageningen University, Veenman. https://edepot.wur.nl/184838.
Kutlu, N., Terzi, R., Tekeli, C., Senel, K., Battal, P., & Kadiogli, A. (2009). Changes in Anatomical Structure and Levels of Endogenous Phytohormones during Leaf Rolling in Ctenanthe setosa Under Drought Stress. Turkish Journal of Biology, 33(2), 115-122. DOI: 10.3906/biy-0806-6. DOI: https://doi.org/10.3906/biy-0806-6
Kutschera, U. (2008). The Growing Outer Epidermal Wall: Design and Physiological Role of a Composite Structure. Annals of Botany, 101(5), 615-621. DOI: https://doi.org/10.1093/aob/mcn015. DOI: https://doi.org/10.1093/aob/mcn015
Lugassi, N., Kelly, G., Fidel, L., Yaniv, Y., Attia, Z., et al. (2015). Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduce Transpiration. Original Research, 6(1114), DOI: https://doi.org/10.3389/fpls.2015.01114. DOI: https://doi.org/10.3389/fpls.2015.01114
Mabel, A. F., Johnson, A. K., Olufemi, O. O., Ayomipo, A. A. T. (2014). Foliar anatomy of some species of Asteraceae in South Western Nigeria. African Journal of Plant Sciences, 8(9), 426-440. DOI: 10.5897/AJPS2014.1196. DOI: https://doi.org/10.5897/AJPS2014.1196
Martinez, J.P., Silva, H., Ladent, J.F., & Pinto, M. (2007). Effect of Drought Stress on the Osmotic Adjustment, Cell Wall Elasticity and Cell Volume of Six Cultivars of Common Beans (Phaseolus vulgaris L.). European Journal of Agronomy, 26(1), 30-38. DOI: https://doi.org/10.1016/j.eja.2006.08.003. DOI: https://doi.org/10.1016/j.eja.2006.08.003
Meidner, H. (1975). Water Supply, Evaporation, and Vapour Diffusion in Leaves. Journal of Experimental Botany, 26(5), 666-672. DOI: https://doi.org/10.1093/jxb/26.5.666. DOI: https://doi.org/10.1093/jxb/26.5.666
Nawazish, S., Hameed, M., & Naurin, S. (2006). Leaf Anatomical Adaptation of Cenchrus ciliaris L. from the Salt Range, Pakistan Against. Pakistan Journal Botany, 38(5), 1723-1730.
Ningsih, C., & Daningsih, E. (2022). Ketebalan Daun dan Laju Transpirasi Tanaman Hias Monokotil. Jurnal Ilmu Pertanian Indonesia, 27(4), 514-520. DOI: 10.18343/jipi.27.4.514 DOI: https://doi.org/10.18343/jipi.27.4.514
Nurida, M.K, Talip, N., & Ruzi, A.R. (2012). Nilai Taksonomi Ciri Anatomi Lamina Daun dan Adaptasi Kepada Persekitaran Spesies Hutan Paya Bakau (Rhizophoracea). Jurnal of Tropical Marine Ecosystem, 2(2), 37-44.
Oguchi, R., Onoad, Y., Terashima, I., & Tholen, D. (2018). Leaf Anatomy and Function. In Adams III, W., Terashima, I. (eds). The Leaf: A Platform for Performing Photosynthesis 44, DOI: https://doi.org/10.1007/978-3-319-93594-2_5. DOI: https://doi.org/10.1007/978-3-319-93594-2_5
Oliveira, I., Meyer, A., Afonso, S., & Goncalves, B. (2018). Compared Leaf Anatomy and Water Relations of Commercial and Traditional Prunus dulcis (Mill.) Cultivars Under Rain-Fed Conditions. Scientia Horticulturae, 229, 226-232. DOI: https://doi.org/10.1016/j.scienta.2017.11.015 DOI: https://doi.org/10.1016/j.scienta.2017.11.015
Olsen, J. T., Caudle, K.L., Johnson, L, C., Baer, S,G., & Maricle, B. R. (2013). Environmental an Genetic Variation in Leaf Anatomy Among Populations of Andropogon gerardii (Poaceae) Along a Precipitation Gradient. American Journal of Botany, 100(10), 1957-1968. DOI: https://doi.org/10.3732/ajb.1200628 DOI: https://doi.org/10.3732/ajb.1200628
Onoda, Y., Schieving,F., & Anten, N.P.R. (2015). A Novel Method of Measuring Leaf Epidermis and Mesophyll Stiffness Shows The Ubiquitous Nature of The Sandwich Structure of Leaf Laminas in Broad-Leaved Angiosperm Species. Journal of Experimental Botany, 66(9), 2487-2499. DOI: https://doi.org/10.1093/jxb/erv024 DOI: https://doi.org/10.1093/jxb/erv024
Orchard, G. E., Torres, P. & Sounthararajah, R. (2008). Use Of Softening Agents to Improve the Production of Formalin-Fixed. Paraffin-Embedded Sections of Nail Tissue: An Assessment. British Journal of Biomedia Science,65 (2), 68-70. DOI: 10.1080/09674845.2008.11732799. DOI: https://doi.org/10.1080/09674845.2008.11732799
Osakabe, Y., Shinozaki-Yamaguchi, K., Shinozaki, K., & Trans, L. P. (2013). ABA Control of Plant Macroelement Membrane Transport Systems in Response to Water Deficit and High Salinity. New Phytologist, 2(1), 35-49. DOI: https://doi.org/10.1111/ nph.12613. DOI: https://doi.org/10.1111/nph.12613
Outlaw, W. H., Schmuck, C. L., & Tolbert, N. E. (1976). Photosynthetic Carbon Metabolism in the Palisade Parenchyma and Spongy Parenchyma of Vicia faba L. Plant Physiology, 58(2), 186-189. DOI: https://doi.org/10.1104/pp.58.2.186. DOI: https://doi.org/10.1104/pp.58.2.186
Ozcan, M., Demiralay, M., & Kahriman, A. (2015). Leaf Anatomical Notes on Cirsium Miller (Asteraceae, Carduoideae) from Turkey. Plant Systematic and Evolution, 301, 1995-2012. DOI: https://doi.org/10.1007/s00606-015-1209-y. DOI: https://doi.org/10.1007/s00606-015-1209-y
Park, S.W., An, S., & Kwack, Y. (2020). Changes in Transpiration Rates and Growth of Cucumber and Tomato Scions and Rootstocks Grown Under Different Light Intensity Conditions in a Closed Transplant Production System. Journal of Bio-Environment Control, 29(4), 339-405. DOI: https://doi.org/10.12791/ KSBEC.2020.29.4.399. DOI: https://doi.org/10.12791/KSBEC.2020.29.4.399
Rahman, M. A., Stratopoulos, Laura, M.F., Moser-Reischl, A., Zolch, T., Haberle, K., Rotzer, T., Pretzcah, H, & Pauleit, S. (2019). Traits of Trees for Cooling Urban Heat Islands: A Meta-analysis. Building and Environment, 170, 1-31. DOI: https://doi.org/10.1016/j.buildenv.2019.106606. DOI: https://doi.org/10.1016/j.buildenv.2019.106606
Rashid, P., Shethi, K. J., & Ahmed A. (2020). Leaf Anatomical Adaptation of Eighteen Mangrove Plant Species from The Sundarbans in Bangladesh. Bangladesh Journal of Botany, 49(4), 903-911. DOI: https://doi.org/10.3329/bjb.v49i4.52496. DOI: https://doi.org/10.3329/bjb.v49i4.52496
Reinking, L. (2007). Examples of Image Analysis Using ImageJ. Retrieved from https://imagej.nih.gov/ij/docs/pdfs/examples.pdf
Salisbury, F. B., & Ross, C. W. (1995). Fisiologi Tumbuhan (Eds. 1)). Penerbit ITB Bandung.
Sass, J. E. (1951). Botanical Microtechnique Second Edition. The Lowa State College Press. DOI: https://doi.org/10.5962/bhl.title.5706
Schulze, E.D., Lange., O.L., Kappen, L., Buschbom, U., & Evenari, M. (1973). Stomatal Responses to Changes in Temperature at Increasing Water Stress. Planta, 110, 29-42.DOI: 10.1007/BF00386920. DOI: https://doi.org/10.1007/BF00386920
Schymanski, S.J & Or, D. (2015). Wind Effects on Leaf Transpiration Challenge the Concept of "Potential Evaporation". Proceeding of IAHS, 371, 99-107. DOI: https://doi.org/10.5194/ piahs-371-99-2015, 2015. DOI: https://doi.org/10.5194/piahs-371-99-2015
Slot, M., & Winter, K. (2017). In Situ Temperature Relationships of Biochemical and Stomatal Controls of Photosynthesis in Four Lowland Tropical Tree Species. Plant, Cell & Environment, 40(2), 3055-3068. DOI: https://doi.org/10.1111/pce.13071. DOI: https://doi.org/10.1111/pce.13071
Sugiarto, A., Marisa, H., & Sarno, S. (2020). Pemodelan Pengaruh Peningkatan Suhu Udara Terhadap Laju Transpirasi Bibit Lansium domesticum Corr Menggunakan Metode Potometer yang Dimodifikasi. Sriwijaya Bioscientia, 1(2), 31-34. DOI: https://doi.org/https://doi.org/10.24233/sribios.1.1.2020.165. DOI: https://doi.org/10.24233/sribios.1.1.2020.165
Sumardi, I., & Wulandari, M. (2010). Anatomy and morphology character of five Indonesian banana cultivars (Musa spp.) of different ploidy level. Biodiversitas, 11 (4), 167-175. DOI: 10.13057/biodiv/d110401. DOI: https://doi.org/10.13057/biodiv/d110401
Sundberg, M. D. (1985). Trends in Distribution and Size of Stomata in Desert Plants. Desert Plants, 7(3), 154-157.
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2018). Fundamentals of Plant Physiology. Oxford University Press.
Thom, J. K., Fltcher, T.D., Lisvesley, S. J., Grey, V., & Szota, C. (2022). Supporting Growth and Transpiration of Newly Planted Street with Passive Irrigation Systems. Water Resources Research, 58, e2020WR029526. DOI: https:// doi.org/10.1029/ 2020WR029526. DOI: https://doi.org/10.1029/2020WR029526
Tihurua, E. F., Agustiani, E. L., & Rahmawati, K. (2020). Karakter Anatomi Daun sebagai Bentuk Adaptasi Tumbuhan Penyusun Zonasi Mangrove di Banggai Kepulauan, Provinsip Sulawesi Tengah. Jurnal Kelautan Tropis, 23(2), 255-264. DOI: https://doi.org/10.14710/jkt.v23i2.7048. DOI: https://doi.org/10.14710/jkt.v23i2.7048
Toscano, S., Ferrante, A., & Romano, D. (2019). Respons of Mediterranean Ornamental Plants to Drought Stress. Horticulturae, 5(6), 1-20. DOI: 10.3390/horticulturae5010006. DOI: https://doi.org/10.3390/horticulturae5010006
Tullus, A., Kupper, P., Sellin, A., Parts, L., Sober, J., Tullus, T., Lohmus, K., Sober, A., & Tullus, H. (2012). Climate Change at Northern Latitudes: Rising Atmospheric Humidity Decreases Transpiration, N-Uptake and Growth Rate of Hybrid Aspen. Plos One, 7(8), 1-11. DOI: https://doi.org/10.1371/journal.pone.0042648. DOI: https://doi.org/10.1371/journal.pone.0042648
Vastag, E., Cocozza, C., Orlovic, S., Kesic, L., Kresoja, M., & Stojnic, S. (2020). Half-Sib Lines of Pedunculate Oak (Quercus robur L.) Respond Differently to Drought Through Biometrical, Anatomical and Physiological Traits. Forests, 11(153), 1-21. DOI: 10.3390/f11020153. DOI: https://doi.org/10.3390/f11020153
Von Caemmerer, S., & Evans, J.R. (2014). Temperature Responses of Mesophyll Conductance Differ Greatly Between Species. Plant, Cells & Environment, 38(4), 629-637. DOI: https://doi.org/10.1111/pce.12449. DOI: https://doi.org/10.1111/pce.12449
Wang, Z., Liu, S., Xu, Y., Zhu, W., & Du, A. (2022). Differences in Transpiration Characteristics among Eucalyptus Plantations of
Three Species on the Leizhou Peninsula, Southern China. Forest, 13(10), 1-20. DOI: https://doi.org/10.3390/f13101544. DOI: https://doi.org/10.3390/f13101544
Widyastuti, T. (2018). Teknologi Budidaya Tanaman Hias Agribisnis. CV Mine.
Williams, N. S. G., Bathgate, R. S., Farrell, C., Lee, K. F., et al. (2021). Ten years of greening a wide brown land: A synthesis of Australian green roof research and roadmap forward. Urban Forestry & Urban Greening, 62, 1-10. DOI: https://doi.org/10.1016/j.ufug.2021.127179. DOI: https://doi.org/10.1016/j.ufug.2021.127179
Wullschleger, S.D., & Oostherhuis, D. M. (1989). The Occurrence of an Internal Cuticle in Cotton (Gossypium hirsutum L.) Leaf Stomates. Environmental and Experimental Botany, 29(2), 229-235. DOI: https://doi.org/10.1016/0098-8472(89)90054-3. DOI: https://doi.org/10.1016/0098-8472(89)90054-3
Xie, S. & Luo, X. (2003). Effect of Leaf Position and Age on Anatomical Structure, Photosynthesis, Stomatal Conductance and Transpiration of Asian Pear. Botanical Bulletin of Academia Sinica, 44, 297-303. DOI: 10.7016/BBAS.200310.0297.
Xing, D., Wang, W., Wu, Y., Qin, X., Li, M., Chen, X, &Yu, R. (2022). Translocation and Utilization Mechanisms of Leaf Intracellular Water in Karst Plant Orychophragmus violaceus (L.) O. E. Schulz and Brassica napus L. Holticulturae, 8(1082), 2-13. DOI: https://doi.org/10.3390/horticulturae8111082. DOI: https://doi.org/10.3390/horticulturae8111082
Yang, Z., Sinclair, T. R., Zhu, M., Messina, C. D., Cooper, M., & Hammer, G. L. (2012). Temperature Effect on Transpiration Response of Maize Plants to Vapour Pressure Deficit. Environmental and Experimental Botany, 78, 157-162, DOI: https://doi.org/10.1016/j.envexpbot.2011.12.034. DOI: https://doi.org/10.1016/j.envexpbot.2011.12.034
Zhang, J., Jiang, X.D., & Cao, X.J. (2014). Photosynthesis and Ultrastructure of Photosynthetic Apparatus in Tomato Leaves under Elevated Temperature. Photosynthetica, 52(3), 430-436. DOI: https://doi.org/10.1007/s11099-014-0051-8. DOI: https://doi.org/10.1007/s11099-014-0051-8
Zwieniecki, M., & Boyce, C.K. (2014). Evolution of a Unique Precision in Angiosperm Leaf Venation Lifts Constraints on Vascular Plant Ecology. Proceedings of the Royal Society B, 281, 1-8. DOI: https://doi.org/10.1098/rspb.2013.2829. DOI: https://doi.org/10.1098/rspb.2013.2829
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.