Role of IGF-1 in goat semen freezing: A Review

Authors

DOI:

https://doi.org/10.18006/2023.11(3).500.505

Keywords:

IGF-1, Semen, Goats, Spermatozoa, Seminal

Abstract

This review is based on the importance of Insulin-like Growth Factor-1 (IGF-1) in goat semen cryopreservation. Recent studies indicate that certain growth factors determine the seminal quality due to the interaction between seminal plasma and spermatozoa. Cryopreservation is the technique used to preserve semen at extremely low temperatures for extended periods, which is essential for artificial insemination (AI) and selective breeding programs. IGF-I promotes the proliferation and maturation of spermatozoa. IGF-I is involved in sperm motility, DNA fragmentation, membrane integrity and fertilizing capacity. There was a significant positive correlation between the weight of animals and IGF-1 genotype diversity. This review aims to investigate the effect of IGF-1 fortification in semen cryopreservation. Further, the review article also assesses the role of IGF-1 in improving the post-thaw quality and viability of goat semen, with the ultimate goal of enhancing the success rates of AI. The research gap this review aims to fill is the limited understanding of the role of IGF-1 fortification on goat semen cryopreservation.

Author Biography

Kaustubh Sharma, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, U.P.-281122

PhD Scholar from GLA Univerrsity Mathura and work carried out at ICAR-CIRG, Mathura, UP

References

Almeida, D. S., Pinto, S. C. C., Alves, M. B. R., Galiza, Y. S., et al. (2021). Glutathione and IGF-1 in bovine seminal cryopreservation: oxidative stress response and pregnancy rate. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 73, 311-319. DOI: https://doi.org/10.1590/1678-4162-12060

Arman, C., Sumantri, C., & Gurnadi, E. (2012). A novel single nucleotide polymorphism in Exon 4 of insulin-like growth factor-1 associated with production traits in bali cattle. Media Peternakan, 35(2), 96-96. DOI: https://doi.org/10.5398/medpet.2012.35.2.96

Baxter, R. C., Martin, J. L., & Handelsman, D. J. (1984). Identification of human semen insulin-like growth factor-I/somatomedin-C immunoreactivity and binding protein. European Journal of Endocrinology, 106(3), 420-427. DOI: https://doi.org/10.1530/acta.0.1060420

Blum, J. W., & Baumrucker, C. R. (2002). Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domestic animal endocrinology, 23(1-2), 101-110. DOI: https://doi.org/10.1016/S0739-7240(02)00149-2

Blum, J. W., & Baumrucker, C. R. (2008). Insulin-like growth factors (IGFs), IGF binding proteins, and other endocrine factors in milk: role in the newborn. Advances in experimental medicine and biology, 606, 397–422. https://doi.org/10.1007/978-0-387-74087-4_16. DOI: https://doi.org/10.1007/978-0-387-74087-4_16

Casas, E., White, S. N., Wheeler, T. L., Shackelford, S. D., Koohmaraie, M., et al. (2006). Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. Journal of Animal Science, 84(3), 520-525. DOI: https://doi.org/10.2527/2006.843520x

Curi, R. A., De Oliveira, H. N., Silveira, A. C., & Lopes, C. R. (2005). Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livestock Production Science, 94(3), 159-167. DOI: https://doi.org/10.1016/j.livprodsci.2004.10.009

Flores, M. J., Flores, J. A., Duarte, G., Vielma, J., Delgadillo, J. A., & Hernández, H. (2018). Artificial long-day photoperiod in the subtropics increases body weight in goat kids born in the autumn. Small Ruminant Research, 169, 181-185. DOI: https://doi.org/10.1016/j.smallrumres.2018.11.013

Gale, S. M., Castracane, V. D., & Mantzoros, C. S. (2004). Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. The Journal of nutrition, 134(2), 295-298. DOI: https://doi.org/10.1093/jn/134.2.295

Gauthier, S. F., Pouliot, Y., & Maubois, J. L. (2006). Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Le Lait, 86(2), 99-125. DOI: https://doi.org/10.1051/lait:2005048

Henricks, M. J., Roser, J. L., & Hess, R. E. (1998). Effects of insulin-like growth factor-I on ram sperm motility, morphology, and fertility. Journal of Animal Science, 76(12), 3569-3576.

Kim, J. W. (2014). Modulation of the somatotropic axis in periparturient dairy cows. Asian-Australasian Journal of Animal Sciences, 27(1), 147-154. doi:10.5713/ajas.2013.13139. DOI: https://doi.org/10.5713/ajas.2013.13139

Kumar, P., Pawaria, S., Dalal, J., Bhardwaj, S., Patil, S., Jerome, A., & Sharma, R. K. (2019). Serum and seminal plasma IGF-1 associations with semen variables and effect of IGF-1 supplementation on semen freezing capacity in buffalo bulls. Animal reproduction science, 204, 101-110. DOI: https://doi.org/10.1016/j.anireprosci.2019.03.010

Lestari, D. A., Oikawa, T., Sutopo, S., Purbowati, E., Setiaji, A., & Kurnianto, Edy. (2020). Effect of insulin-like growth factor 1 gene on growth traits of Kejobong goat and its growth analysis.Vet World, 13(1), 127–133. DOI: https://doi.org/10.14202/vetworld.2020.127-133

Macpherson, M. L., Simmen, R. C. M., Simmen, F. A., Hernandez, J., et al. (2002). Insulin-like growth factor-I and insulin-like growth factor binding protein-2 and-5 in equine seminal plasma: association with sperm characteristics and fertility. Biology of Reproduction, 67(2), 648-654. DOI: https://doi.org/10.1095/biolreprod67.2.648

Magistrelli, D., Valli, A., & Rosi, F. (2005). Insulin and IGF-1 in goat milk: influence of the diet. Italian Journal of Animal Science, 4(sup2), 386-388. DOI: https://doi.org/10.4081/ijas.2005.2s.386

Meyer, Z., Hoflich, C., Wirthgen, E., Olm, S., Hammon, H. M., & Hoeflich, A. (2017). Analysis of the IGF-system in milk from farm animals–Occurrence, regulation, and biomarker potential. Growth Hormone & IGF Research, 35, 1-7. DOI: https://doi.org/10.1016/j.ghir.2017.05.004

Misrianti, R. (2009). Identifikasi Keragaman Gen Pituitary-Specific Positive Transcription Factor 1 (Pit1) pada Kerbau Lokal (Bubalus bubalis) dan Sapi Friesian-Holstein. Jurnal Ilmu Ternak dan Veteriner, 14(2), 119-124.

Modepalli, V., Hinds, L. A., Sharp, J. A., Lefevre, C., & Nicholas, K. R. (2016). Marsupial tammar wallaby delivers milk bioactive to altricial pouch young to support lung development. Mechanisms of development, 142, 22-29. DOI: https://doi.org/10.1016/j.mod.2016.08.004

Monaco, M. H., Gronlund, D. E., Bleck, G. T., Hurley, W. L., Wheeler, M. B., & Donovan, S. M. (2005). Mammary specific transgenic over-expression of insulin-like growth factor-I (IGF-I) increases pig milk IGF-I and IGF binding proteins, with no effect on milk composition or yield. Transgenic research, 14(5), 761-773. DOI: https://doi.org/10.1007/s11248-005-7219-8

Ovesen, P., Flyvbjerg, A., & Orskov, H. (1995). Insulin-like growth factor I (IGF-I) and IGF binding proteins in seminal plasma before and after vasectomy in normal men. Fertility and sterility, 63(4), 913-918. DOI: https://doi.org/10.1016/S0015-0282(16)57502-5

Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. (2011).Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Experimental gerontology, 46(5), 376-381. DOI: https://doi.org/10.1016/j.exger.2010.09.003

Pehlivan, E. (2019). Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body trait measurements and climatic factors in prepubertal goat kids. Archives Animal Breeding, 62(1), 241-248. DOI: https://doi.org/10.5194/aab-62-241-2019

Prosser, C. G. (1996). Insulin-like growth factors in milk and mammary gland. Journal of Mammary Gland Biology and Neoplasia, 1(3), 297-306. DOI: https://doi.org/10.1007/BF02018082

Prosser, C. G., & Schwander, J. (1996). Influence of insulin-like growth factor-binding protein-2 on plasma clearance and transfer of insulin-like growth factors-I and-II from plasma into mammary-derived lymph and milk of goats. Journal of endocrinology, 150(1), 121-127. DOI: https://doi.org/10.1677/joe.0.1500121

Purup, S., Vestergaard, M., Pedersen, L. O., & Sejrsen, K. (2007). Biological activity of bovine milk on proliferation of human intestinal cells. Journal of Dairy Research, 74(1), 58-65. DOI: https://doi.org/10.1017/S0022029906002093

Ramasharma, K., Cabrera, C. M., & Li, C. H. (1986). Identification of insulin-like growth factor-II in human seminal and follicular fluids. Biochemical and biophysical research communications, 140(2), 536-542. DOI: https://doi.org/10.1016/0006-291X(86)90765-5

Rasouli, S., Abdolmohammadi, A., Zebarjadi, A., & Mostafaei, A. (2017).Evaluation of polymorphism in IGF-I and IGFBP-3 genes and their relationship with twinning rate and growth traits in Markhoz goats. Annals of Animal Science, 17(1), 89-103. DOI: https://doi.org/10.1515/aoas-2016-0020

Roser, J. L., & Hess, R. E. (2001). Effect of insulin-like growth factor-I on the fertility of frozen-thawed bull sperm. Journal of Animal Science, 79(12), 3489-3494.

Sauerweina, H., Breier, B. H., Gallaher, B. W., Götz, C., Küfner, G., Montag, T., Vickers, M., & Schallenberger, E. (2000). Growth hormone treatment of breeding bulls used for artificial insemination improves fertilization rates. Domestic Animal Endocrinology, 18(1), 145-158. DOI: https://doi.org/10.1016/S0739-7240(99)00070-3

Schenkel, F. S., Miller, S. P., Ye, X., Moore, S. S., Nkrumah, J. D., Li, C., Yu, J., Mandell, I.B., Wilton, J.W., & Williams, J. L. (2005). Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. Journal of animal science, 83(9), 2009-2020. DOI: https://doi.org/10.2527/2005.8392009x

Selvaraju, S., Sivasubramani, T., Raghavendra, B. S., Raju, P., Rao, S. B. N., Dineshkumar, D., & Ravindra, J. P. (2012). Effect of dietary energy on seminal plasma insulin-like growth factor-I (IGF-I), serum IGF-I and testosterone levels, semen quality and fertility in adult rams. Theriogenology, 78(3), 646-655. DOI: https://doi.org/10.1016/j.theriogenology.2012.03.010

Susilowati, S., Triana, I. N., & Malik, A. (2015).The effects of insulin-like growth factor I (IGF-I) complex from seminal plasma on capacitation, membrane integrity and DNA fragmentation in goat spermatozoa. Asian Pacific Journal of Reproduction, 4(3), 208-211. DOI: https://doi.org/10.1016/j.apjr.2015.06.003

Thornton, K. J., Kamanga-Sollo, E., White, M. E., & Dayton, W. R. (2016). Active g protein–coupled receptors (gpcr), matrix metalloproteinases 2/9 (mmp2/9), heparin-binding epidermal growth factor (hbegf), epidermal growth factor receptor (egfr), erbb2, and insulin-like growth factor 1 receptor (igf-1r) are necessary for trenbolone acetate–induced alterations in protein turnover rate of fused bovine satellite cell cultures. Journal of animal science, 94(6), 2332-2343. DOI: https://doi.org/10.2527/jas.2015-0178

Wang, C., Liu, Q., Zhang, Y.L., Pei, C.X., Zhang, S.L., Guo, G., Huo, W.J., Yang, W.Z., Wang, H. (2017). Effects of isobutyrate supplementation in pre-and post-weaned dairy calves diet on growth performance, rumen development, blood metabolites and hormone secretion. Animal, 11(5), 794-801. DOI: https://doi.org/10.1017/S1751731116002093

Werner, H., Sarfstein, R., LeRoith, D., & Bruchim, I. (2016). Insulin-like growth factor 1 signaling axis meets p53 genome protection pathways. Frontiers in oncology, 6, 159. DOI: https://doi.org/10.3389/fonc.2016.00159

Ziegler, A. N., Levison, S. W., & Wood, T. L. (2015). Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nature Reviews Endocrinology, 11(3), 161-170. DOI: https://doi.org/10.1038/nrendo.2014.208

Downloads

Published

2023-06-30

How to Cite

Sharma, K., Ranjan, R., & Gupta, S. (2023). Role of IGF-1 in goat semen freezing: A Review. Journal of Experimental Biology and Agricultural Sciences, 11(3), 500–505. https://doi.org/10.18006/2023.11(3).500.505

Issue

Section

REVIEW ARTICLES