Potential effects of essential oils in safeguarding the health and enhancing production performance of livestock animals: The current scientific understanding
DOI:
https://doi.org/10.18006/2022.10(6).1222.1240Keywords:
Essential oil, Animal, Health, Production, Active ingredientsAbstract
The food sector competes in a cutthroat environment, and it constantly struggles to maintain or even grow its market share. For customer confidence and consumption to remain strong, consistent animal products are needed. The qualitative attributes of the derived goods appear to be improved by the addition of bioactive substances to food, such as essential oils (EOs), and consumers are shielded from the impacts of bacterial and oxidative deterioration. Due to the current controversy surrounding synthetic chemicals and their alleged carcinogenic potential, a substantial study has been done to find effective and safe substitutes. Aromatic plants and the corresponding EOs from them are considered natural products and are typically employed in ruminant nutrition. Since dietary supplementation has been demonstrated to be an easy and practical method to successfully suppress oxidative processes or microbial deterioration at their localized sites, the addition of EOs in animal diets is now becoming a regular practice. However, there is just a little amount of evidence supporting the notion that these compounds may improve nutrient absorption and gastrointestinal health. Additionally, a variety of factors affect how well EOs works in animal diets. These variables can be, on the one hand, the erratic composition, and the many additions to the diet, and, on the other hand, erratic animal genetic elements. Maximizing the use of EOs and creating high-quality products require a deeper understanding of the composition and activity of the gastrointestinal tract microbiota. Numerous EOs contain bioactive substances with the potential to serve as multifunctional feed supplements for animals, with impacts on growth performance, the digestive system, the growth of pathogenic bacteria, and lipid oxidation, among others. To establish their regular use in animal production and to determine their precise mechanism of action, more research is required. The potential advantages of EOs for livestock health and production are highlighted in the current article.
References
Abd El-Hack, M.E., Alagawany, M., Farag, M.R., Tiwari, R., Karthik, K., Dhama, K., Zorriehzahra, J. & Adel, M. (2016). Beneficial impacts of thymol essential oil on health and production of animals, fish and poultry: a review. Journal of Essential Oil Research, 28(5): 365-382. DOI: https://doi.org/10.1080/10412905.2016.1153002
Aebisher, D., Cichonski, J., Szpyrka, E., Masjonis, S., & Chrzanowski, G. (2021). Essential oils of seven Lamiaceae plants and their antioxidant capacity. Molecules (Basel, Switzerland), 26(13), 3793. https://doi.org/10.3390/molecules26133793 DOI: https://doi.org/10.3390/molecules26133793
Alagawany, M., Farag, M.R., Dhama, K., Mohamed E. Abd El-Hack, Tiwari, R. & Gazi Mahabubul Alam (2015). Mechanisms and beneficial applications of resveratrol as feed additive in animal and poultry nutrition: A review. International Journal of Pharmacology, 11(3): 213-221. DOI: https://doi.org/10.3923/ijp.2015.213.221
Al-Suwaiegh, S.B., Morshedy, S.A., Mansour, A.T., Ahmed, M.H., Zahran, S.M., Alnemr, T.M., & Sallam, S.M.A. (2020). Effect of an essential oil blend on dairy cow performance during treatment and post-treatment periods. Sustainability, 12(21), 9123. https://doi.org/10.3390/su12219123 DOI: https://doi.org/10.3390/su12219123
Amber, R., Adnan, M., Tariq, A., Khan, S.N., et al. (2018). Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock. Saudi Journal of Biological Sciences, 25, 154–161. https://doi.org/10.1016/j.sjbs.2017.02.008 DOI: https://doi.org/10.1016/j.sjbs.2017.02.008
Amorati, R., Foti, M.C., & Valgimigli, L. (2013). Antioxidant activity of essential oils. Journal of Agriculture and Food Chemistry, 61(46), 10835-47. https://doi.org/10.1021/jf403496k DOI: https://doi.org/10.1021/jf403496k
Anand, T.S., Vahab, H., Chandran, D., Shanavas, A., et al. (2022). Dairy waste management: A narrative review on current knowledge. The Indian Veterinary Journal, 99(08), 7-19.
Andrade, K.S., Poncelet, D., & Ferreira, S.R.S. (2017). Sustainable extraction and encapsulation of pink pepper oil. Journal of Food Engineering, 204, 38–45. https://doi.org/10.1016/ j.jfoodeng.2017.02.020. DOI: https://doi.org/10.1016/j.jfoodeng.2017.02.020
Andri, F., Huda, A. N., & Marjuki, M. (2020). The use of essential oils as a growth promoter for small ruminants: a systematic review and meta-analysis. F1000Research, 9, 486. https://doi.org/ 10.12688/f1000research.24123.2 DOI: https://doi.org/10.12688/f1000research.24123.2
Asif, M., Saleem, M., Saadullah, M., Yaseen, H.S., & Al Zarzour, R. (2020). COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology, 28(5), 1153–1161. https://doi.org/ 10.1007/s10787-020-00744-0 DOI: https://doi.org/10.1007/s10787-020-00744-0
Aziz, Z.A.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., et al. (2018). Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Current Drug Metabolism, 19(13), 1100–1110. https://doi.org/10.2174/1389200219666180723144850 DOI: https://doi.org/10.2174/1389200219666180723144850
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils—A review. Food and Chemical Toxicology, 46, 446–475. https://doi.org/10.1016/j.fct.2007.09.106 DOI: https://doi.org/10.1016/j.fct.2007.09.106
Beauchemin, K.A., McAllister, T.A., & McGinn, S.M. (2009). Dietary mitigation of enteric methane from cattle. CAB Reviews Perspectives. Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1–18. https://doi.org/10.1079/ PAVSNNR20094035 DOI: https://doi.org/10.1079/PAVSNNR20094035
Benchaar, C., Calsamiglia, S., Chaves, AV., Fraser, GR., & Colombatto, D. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145, 209-228. https://doi.org/10.1016/ j.anifeedsci.2007.04.014 DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.014
Benchaar, C., & Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166, 338–355. https://doi.org/10.1016/j.anifeedsci.2011.04.024 DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.024
Benetel, G., Silva, T.D.S., Fagundes, G.M., Welter, K.C., et al. (2022). Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses. Molecules, 27(7), 2227. https://doi.org/10.3390/ molecules27072227 DOI: https://doi.org/10.3390/molecules27072227
Boadi, D., Benchaar, C., Chiquette, J., & Massé, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84, 319–335. https://doi.org/10.4141/A03-109 DOI: https://doi.org/10.4141/A03-109
Brenes, A., & Roura, E. (2010). Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology, 158, 1–14. https://doi.org/10.1016/ j.anifeedsci.2010.03.007 DOI: https://doi.org/10.1016/j.anifeedsci.2010.03.007
Brochot, A., Guilbot, A., Haddioui, L., & Roques, C. (2017). Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiology Open, 6(4), e00459. https://doi.org/10.1002/ mbo3.459 DOI: https://doi.org/10.1002/mbo3.459
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/ j.ijfoodmicro.2004.03.022 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Buttar, H.S., Kumar, H., Chandran, D., Tuli, H.S., & Dhama, K. (2022). Potential health benefits of using aloe vera as a feed additive in livestock: A mini-review. The Indian Veterinary Journal, 99(1), 09-18.
Calo, J.R., Crandall, P.G., O’Bryan, C.A., & Ricke, S.C. (2015). Essential oils as antimicrobials in food systems: A review. Food Control, 54, 111–119. https://doi.org/10.1016/ j.foodcont.2014.12.040 DOI: https://doi.org/10.1016/j.foodcont.2014.12.040
Calsamiglia, S., Busquet, M., Cardozo, P.W., Castillejos, L., & Ferret, A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90, 2580–2595. https://doi.org/10.3168/jds.2006-644 DOI: https://doi.org/10.3168/jds.2006-644
Cannas, S., Usai, D., Tardugno, R., Benvenuti, S., Pellati, F., Zanetti, S., & Molicotti, P. (2016). Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils. Natural Production Research, 30(3), 332-339. https://doi.org/10.1080/14786419.2015.1060592 DOI: https://doi.org/10.1080/14786419.2015.1060592
Carson, C.F., & Riley, T.V. (1993). Antimicrobial activity of the essential oil of Melaleuca alternifolia. Letters in Applied Microbiology, 16, 49–55. https://doi.org/10.1111/j.1472-765X.1993.tb00340.x DOI: https://doi.org/10.1111/j.1472-765X.1993.tb00340.x
Chandran, D., & Arabi, M. (2019). Therapeutic management of anaplasmosis in a cross-bred Jersey cow: A case report. International Journal of Pharmaceutical Sciences Review and Research, 59(2), 56-67.
Chandran, D., & Radhakrishnan, U. (2019). Lactoferrin: A general review. International Journal of Pharmaceutical Sciences Review and Research, 58(2), 65-75. DOI: https://doi.org/10.47583/ijpsrr.2020.v65i02.018
Chandran, D., Padmaja, P.B., & Vishnurahav, R.B. (2019). Haemato-biochemical changes and therapeutic management of Babesiosis in cattle. Journal of Veterinary and Animal Sciences, 50(1), 68-70.
Chandran, D. (2021a). Veterinary phytomedicine in India: A review. International Journal of Scientific Research in Science, Engineering and Technology, 8(3), 598-605. https://doi.org/ 10.32628/IJSRST2183135 DOI: https://doi.org/10.32628/IJSRST2183135
Chandran, D. (2021b). Bovine babesiosis: A general review. International Journal of Veterinary Sciences and Animal Husbandry, 6(3), 40-44.
Chandran, D., & Athulya, P.S. (2021). A Study of the clinico-haematological profile and therapeutic management of acute babesiosis in a cross-bred Jersey cow–A case report. International Journal of Pharmaceutical Sciences Review and Research, 68(1), 60-62. https://doi.org/10.47583/ijpsrr.2021.v68i01.010 DOI: https://doi.org/10.47583/ijpsrr.2021.v68i01.010
Chandran, D., Rojan, P.M., Venkatachalapathy, T., & Lejaniya, A.S. (2021a). Mortality and morbidity pattern in goats under organized farm conditions of Kerala. Journal of Veterinary and Animal Sciences, 52(2): 175-179. https://doi.org/10.51966/ jvas.2021.52.2.178-182
Chandran, D., Lejaniya, A.S., Yatoo, M.I., Mohapatra, R.K., & Dhama, K. (2021b). Major Health Effects of Casein and Whey Proteins Present in Cow Milk: A Narrative Review. The Indian Veterinary Journal, 98(11), 9-19.
Chandran, D., Emran, T.B., Nainu, F., Sharun, K., et al. (2022). Beneficial effects of dietary Allium sativum (garlic) supplementation on health and production of poultry: A mini-review. The Indian Veterinary Journal, 9, 821-824.
Cobellis, G., Trabalza-Marinucci, M., & Yu, Z. (2016). Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. The Science of the total environment, 545, 556–568. https://doi.org/10.1016/j.scitotenv.2015.12.103 DOI: https://doi.org/10.1016/j.scitotenv.2015.12.103
Corbo, MR., Bevilacqua, A., Campaniello, D., D’ Amato, D., & Speranza, B. (2009). Prolonging microbial shelflife of foods through the use of natural compounds and non-thermal approaches-a review. International journal of Food Science and Technology, 44, 223-241. https://doi.org/10.1111/j.1365-2621.2008.01883.x DOI: https://doi.org/10.1111/j.1365-2621.2008.01883.x
Cutter, C.N. (2000). Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium associated with beef. Journal of Food Protection, 63, 601–607. https://doi.org/10.4315/0362-028X-63.5.601 DOI: https://doi.org/10.4315/0362-028X-63.5.601
Deans, SG., & Ritchie, G. (1987). Antibacterial properties of plant essential oils. International Journal of Food Microbiology, 5, 165-180. https://doi.org/10.1016/0168-1605(87)90034-1 DOI: https://doi.org/10.1016/0168-1605(87)90034-1
Deepak, C., Rani, K.J., Shyama, K., & Ally, K. (2020a) Effect of dietary incorporation of Ksheerabala residue on growth performance in Wistar rats. Journal of Veterinary and Animal Sciences, 51(2), 179-183.
Deepak, C., Uma, R., & Linu, E. (2020b). Characterization of Malabari goat lactoferrin and its pepsin hydro-lysate. Journal of Veterinary and Animal Sciences, 51(1), 40-47.
De Matos, S.P., Teixeira, H.F., de Lima, Á.A.N., Veiga-Junior, V.F., & Koester, L.S. (2019). Essential oils and isolated terpenes in nanosystems designed for topical administration: A review. Biomolecules, 9(4), 138. https://doi.org/10.3390/biom9040138 DOI: https://doi.org/10.3390/biom9040138
Dhama, K., Tiwari, R, Chakraborty, S., Saminathan, M., et al. (2014) Evidence based antibacterial potentials of medicinal plants and herbs countering bacterial pathogens especially in the era of emerging drug resistance: An integrated update. International Journal of Pharmacology, 10(1), 1-43. https://doi.org/10.3923/ ijp.2014.1.43 DOI: https://doi.org/10.3923/ijp.2014.1.43
Dhama, K., Karthik, K., Khandia, R., Munjal, A., et al. (2018) Medicinal and therapeutic potential of herbs and plant metabolites / extracts countering viral pathogens - Current knowledge and future prospects. Current Drug Metabolism, 19(3), 236-263. DOI: https://doi.org/10.2174/1389200219666180129145252
Dorantes-Iturbide, G., Orzuna-Orzuna, J.F., Lara-Bueno, A., Mendoza-Martínez, G. D., Miranda-Romero, L.A., & Lee-Rangel, H.A. (2022). Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Veterinary sciences, 9(9), 475. https://doi.org/10.3390/vetsci9090475 DOI: https://doi.org/10.3390/vetsci9090475
Dorman, HJ., & Deans, SG. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308-316. https://doi.org/10.1046/ j.1365-2672.2000.00969.x DOI: https://doi.org/10.1046/j.1365-2672.2000.00969.x
Dosoky, N.S., & Setzer, W.N. (2018). Chemical composition and biological activities of essential oils of Curcuma species. Nutrients, 10(9), 1196. https://doi.org/10.3390/nu10091196 DOI: https://doi.org/10.3390/nu10091196
Ebani, V. V., & Mancianti, F. (2020). Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Veterinary sciences, 7(4), 193. https://doi.org/10.3390/vetsci7040193 DOI: https://doi.org/10.3390/vetsci7040193
Eid, A. M., & Hawash, M. (2021). Biological evaluation of safrole oil and safrole oil nanoemulgel as antioxidant, antidiabetic, antibacterial, antifungal and anticancer. BMC Complementary Medicine and Therapies, 21, 159. https://doi.org/10.1186/s12906-021-03324-z DOI: https://doi.org/10.1186/s12906-021-03324-z
El-Essawy, A.M., Anele, U.Y., Abdel-Wahed, A.M., Abdou, A.R., & Khattab, I.M. (2021). Effects of anise, clove and thyme essential oils supplementation on rumen fermentation, blood metabolites, milk yield and milk composition in lactating goats. Animal Feed Science Technology, 271, 114760. https://doi.org/10.1016/ j.anifeedsci.2020.114760 DOI: https://doi.org/10.1016/j.anifeedsci.2020.114760
Evangelista, A. G., Corrêa, J. A. F., Pinto, A. C. S. M., & Luciano, F. B. (2022). The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance - a review. Critical reviews in food science and nutrition, 62(19), 5267–5283. https://doi.org/10.1080/10408398.2021.1883548 DOI: https://doi.org/10.1080/10408398.2021.1883548
Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venâncio, F., et al. (2003). Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters in Applied Microbiology, 36(1), 35–40. https://doi.org/10.1046/j.1472-765x.2003.01259.x DOI: https://doi.org/10.1046/j.1472-765X.2003.01259.x
Farag, R.S., Daw, Z., Hewed, F., & El-Baroty, G.S.A. (1989). Antimicrobial activity of some Egyptian spice essential oils. Journal of Food Protection, 52, 665-667. https://doi.org/10.4315/ 0362-028X-52.9.665 DOI: https://doi.org/10.4315/0362-028X-52.9.665
Fernandez-Panchon, M.S., Villano, D., Troncoso, A.M., & Garcia-Parrilla, M.C. (2008). Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Critical Reviews in Food Science and Nutrition, 48, 649-671. https://doi.org/10.1080/ 10408390701761845 DOI: https://doi.org/10.1080/10408390701761845
Franz, C., Baser, K.H.C., & Windisch, W. (2010). Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragrance Journal, 25, 327–340. https://doi.org/10.1002/ffj.1967 DOI: https://doi.org/10.1002/ffj.1967
Gill, A.O., & Holle, R.A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal for Food Microbiology, 108, 1-9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009 DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.10.009
Giovannini, D., Gismondi, A., Basso, A., Canuti, L., Braglia, R., Canini, A., Mariani, F., & Cappelli, G. (2016). Lavandula angustifolia mill. Essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to Staphylococcus aureus. Immunological Investigations, 45, 11–28. https://doi.org/10.3109/08820139.2015.1085392 DOI: https://doi.org/10.3109/08820139.2015.1085392
Govaris, A., Botsoglou, N., Papageorgiou, G., Botsoglou, E., & Ambrosiadis, I. (2004). Dietary versus post-mortem use of oregano oil and/or α-tocopherol in turkeys to inhibit development of lipid oxidation in meat during refrigerated storage. International Journal for Food Science and Nutrition, 55, 115–123. https://doi.org/10.1080/09637480410001666487 DOI: https://doi.org/10.1080/09637480410001666487
Greathead, H. (2003). Plants and plant extracts for improving animal productivity. Proceedings of the Nutrition Society, 62, 279-290. https://doi.org/10.1079/PNS2002197 DOI: https://doi.org/10.1079/PNS2002197
Hart, K., Jones, H., Waddams, K., Worgan, H., Zweifel, B., & Newbold, C. (2019) An Essential Oil Blend Decreases Methane Emissions and Increases Milk Yield in Dairy Cows. Open Journal of Animal Sciences, 9, 259-267. doi: 10.4236/ojas.2019.93022. DOI: https://doi.org/10.4236/ojas.2019.93022
Hoffmann, K. H. (2020). Essential oils. Zeitschrift fur Naturforschung. C, Journal of biosciences, 75(7-8), 177. https://doi.org/10.1515/znc-2020-0124 DOI: https://doi.org/10.1515/znc-2020-0124
Jamroz, D., Wertelecki, T., Houszka, M., & Kamel, C. (2006). Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. Journal of Animal Physiology and Animal Nutrition, 90, 255–268. https://doi.org/ 10.1111/j.1439-0396.2005.00603.x DOI: https://doi.org/10.1111/j.1439-0396.2005.00603.x
Jerkovic, I., Mastelic, J., & Milos, M. (2001). The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. International Journal of Food Science and Technology, 36, 649–654. https://doi.org/10.1046/j.1365-2621.2001.00502.x DOI: https://doi.org/10.1046/j.1365-2621.2001.00502.x
Jiménez-Ocampo R., Montoya-Flores, M.D., Pamanes-Carrasco, G., Herrera-Torres, E., et al. (2022) Impact of orange essential oil on enteric methane emissions of heifers fed bermudagrass hay. Frontiers in Veterinary Science, 9, 863910. doi: 10.3389/fvets.2022.863910. DOI: https://doi.org/10.3389/fvets.2022.863910
Juliano, C., Mattana, A., & Usai, M. (2000). Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel Growing Wild in Sardinia. Journal of Essential Oil Research, 12, 516–522. https://doi.org/10.1080/ 10412905.2000.9699578 DOI: https://doi.org/10.1080/10412905.2000.9699578
Kholif, A.E., Kassab, A.Y., Azzaz, H.H., Matloup, O.H., Hamdon, H.A., Olafadehan, O.A., & Morsy, T.A. (2018). Essential oils blend with a newly developed enzyme cocktail works synergistically to enhance feed utilization and milk production of Farafra ewes in the subtropics. Small Ruminant Research, 161, 43–50. https://doi.org/10.1016/j.smallrumres.2018.02.011 DOI: https://doi.org/10.1016/j.smallrumres.2018.02.011
Kim, J., Marshall, M.R., & Wei, C. (1995). Antimicrobial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43, 2839-2845. https://doi.org/10.1021/jf00059a013 DOI: https://doi.org/10.1021/jf00059a013
Kumar, M., Chandran, D., Tomar, M., Bhuyan, D.J., et al. (2022a). Valorization potential of tomato (Solanum lycopersicum L.) seed: nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in Foods. Horticulturae, 8(3), 265. https://doi.org/10.3390/horticulturae8030265 DOI: https://doi.org/10.3390/horticulturae8030265
Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., et al. (2022b). Plant-based proteins and their multifaceted industrial applications. Lebensmittel-Wissenschaft & Technologie, 154, 112620. https://doi.org/10.1016/j.lwt.2021.112620 DOI: https://doi.org/10.1016/j.lwt.2021.112620
Kumari, N., Kumar, M., Mekhemar, M., Lorenzo, J.M., et al. (2022). Therapeutic uses of wild plant species used by rural inhabitants of Kangra in the western Himalayan region. South African Journal of Botany, 148, 415-436. https://doi.org/10.3390/ horticulturae7100343 DOI: https://doi.org/10.1016/j.sajb.2022.05.004
Kuralkar, P., & Kuralkar, S. V. (2021). Role of herbal products in animal production - An updated review. Journal of ethnopharmacology, 278, 114246. https://doi.org/10.1016/ j.jep.2021.114246 DOI: https://doi.org/10.1016/j.jep.2021.114246
Ku-Vera, J.C., Jiménez-Ocampo, R., Valencia-Salazar, S.S., Montoya-Flores, M.D., et al. (2020). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7, 584. https://doi.org/10.3389/ fvets.2020.00584 DOI: https://doi.org/10.3389/fvets.2020.00584
Lambert, R.J., Skandamis, P.N., Coote, P.J., & Nychas, G.J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91, 453-462. https://doi.org/10.1046/j.1365-2672.2001.01428.x DOI: https://doi.org/10.1046/j.1365-2672.2001.01428.x
Leherbauer, I., & Stappen, I. (2020). Selected essential oils and their mechanisms for therapeutic use against public health disorders. An overview. Zeitschrift fur Naturforschung. C, Journal of biosciences, 75(7-8), 205–223. https://doi.org/10.1515/znc-2020-0007 DOI: https://doi.org/10.1515/znc-2020-0007
Lei, Z., Zhang, K., Li, C., Wu, J., et al. (2018). Dietary supplementation with Essential-oils-cobalt for improving growth performance, meat quality and skin cell capacity of goats. Scientific reports, 8(1), 11634. https://doi.org/10.1038/ s41598-018-29897-3 DOI: https://doi.org/10.1038/s41598-018-29897-3
Lejaniya, A.S., Chandran, D., & Geetha, R. (2021a). Recent trends in application of lactic acid bacteria (LAB) in dairy and biomedical industry: A critical review. World Journal of Pharmaceutical Research, 10(12), 577-591. https://doi.org/10.20959/wjpr202112-21749
Lejaniya, A.S., Chandran, D., Venkatachalapathy, T., Bashir, B.P., et al. (2021b). Analysis of milk production performance of Attappadi Black, Malabari and cross-bred goats under organized farm conditions of Kerala. The Indian Veterinary Journal, 98(05), 13-19.
Leyva-López, N., Gutiérrez-Grijalva, E.P., Vazquez-Olivo, G., & Heredia, J.B. (2017). Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules (Basel, Switzerland), 22(6), 989. https://doi.org/10.3390/molecules22060989 DOI: https://doi.org/10.3390/molecules22060989
Marino, M., Bersani, C., & Comi, G. (1999). Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. Journal of Food Protection, 62, 1017–1023. https://doi.org/10.4315/0362-028X-62.9.1017 DOI: https://doi.org/10.4315/0362-028X-62.9.1017
McIntosh, F.M., Williams, P., Losa, R., Wallace, R.J., Beever, D.A., & Newbold, C.J. (2003). Effects of essential oils on ruminal microorganisms and their protein metabolism. Applied and Environmental Microbiology, 69, 5011–5014. https://doi.org/10.1128/AEM.69.8.5011-5014.2003 DOI: https://doi.org/10.1128/AEM.69.8.5011-5014.2003
Miguel, M.G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 15, 9252–9287. https://doi.org/10.3390/molecules15129252 DOI: https://doi.org/10.3390/molecules15129252
Morsy, T.A., Kholif, S.M., Matloup, O.H., Abdo, M.M., & El-Shafie, M.H. (2012). Impact of anise, clove and juniper oils as feed additives on the productive performance of lactating goats. International Journal of Dairy Science, 7, 20–28. https://doi.org/10.3923/ijds.2012.20.28 DOI: https://doi.org/10.3923/ijds.2012.20.28
Muir, W.I., Bryden, W.L., & Husband, A.J. (2000). Immunity, vaccination and the avian intestinal tract. Developmental and Comparative Immunology, 24, 325–342. https://doi.org/10.1016/S0145-305X(99)00081-6 DOI: https://doi.org/10.1016/S0145-305X(99)00081-6
Negi, P.S. (2012). Plant extracts for the control of bacterial growth: Efficacy stability and safety issues for food application. International Journal of Food Microbiology, 156, 7-17. https://doi.org/10.1016/j.ijfoodmicro.2012.03.006 DOI: https://doi.org/10.1016/j.ijfoodmicro.2012.03.006
Nehme, R., Andrés, S., Pereira, R.B., Ben Jemaa, M., et al. (2021). Essential oils in livestock: from health to food quality. Antioxidants (Basel, Switzerland), 10(2), 330. https://doi.org/10.3390/antiox10020330 DOI: https://doi.org/10.3390/antiox10020330
Omonijo, F.A., Ni, L., Gong, J., Wang, Q., Lahaye, L., & Yang, C. (2018). Essential oils as alternatives to antibiotics in swine production. Animal nutrition (Zhongguo xu mu shou yi xue hui), 4(2), 126–136. https://doi.org/10.1016/j.aninu.2017.09.001 DOI: https://doi.org/10.1016/j.aninu.2017.09.001
Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37, 155-162. https://doi.org/10.1016/S0168-1605(97)00070-6 DOI: https://doi.org/10.1016/S0168-1605(97)00070-6
Oussalah, M., Caillet, S., & Lacroix, M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. Journal of Food Protection, 69, 1046-1055. https://doi.org/10.4315/0362-028X-69.5.1046 DOI: https://doi.org/10.4315/0362-028X-69.5.1046
Pandey, A.K., Kumar, P., Singh, P., Tripathi, N.N., & Bajpai, V.K. (2017). Essential oils: Sources of antimicrobials and food preservatives. Frontiers in Microbiology, 7 (2161) https://doi.org/10.3389/fmicb.2016.02161 DOI: https://doi.org/10.3389/fmicb.2016.02161
Panghal, M., Kaushal, V., & Yadav, J.P. (2011). In vitro antimicrobial activity of ten medicinal plants against clinical isolates of oral cancer cases. Annals Clinical Microbiology and Antimicrobials, 10(1), 1-11. https://doi.org/10.1186/1476-0711-10-21 DOI: https://doi.org/10.1186/1476-0711-10-21
Patange, D.D.D., Virshasen Vinayak, D., Chandran, D., Kumar, M., & Lorenzo, J.M. (2022a). Comparative effect of cooling on the physico-chemical-sensory properties of ghee from cow and buffalo milk, and evaluation of the low-fat spread prepared from cow and buffalo milk ghee. Food Analytical Methods, 1-11. https://doi.org/10.1007/s12161-022-02312-4 DOI: https://doi.org/10.1007/s12161-022-02312-4
Patange, D.D., Pansare, K.S., Kumar, M., Kumari, A., et al. (2022b). Studies on utilization and shelf life of Piper betel leaves added ghee-based low-fat spread. Food Analytical Methods, 1-12. https://doi.org/10.1007/s12161-022-02400-5 DOI: https://doi.org/10.1007/s12161-022-02400-5
Pisoschi, A.M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/ j.ejmech.2015.04.040 DOI: https://doi.org/10.1016/j.ejmech.2015.04.040
Plant, R.M., Dinh, L., Argo, S., & Shah, M. (2019). The essentials of essential oils. Advances in Pediatrics, 66, 111–122. https://doi.org/10.1016/j.yapd.2019.03.005 DOI: https://doi.org/10.1016/j.yapd.2019.03.005
Platel, K., & Srinivasan, K. (2004). Digestive stimulant action of spices: A myth or reality? Indian Journal of Medicinal Research, 119(5), 167–179.
Prakash, P., Kumar, M., Pundir, A., Puri, S., et al. (2021a) Documentation of commonly used ethnoveterinary medicines from wild plants of the high mountains in Shimla District, Himachal Pradesh, India. Horticulturae, 7(10), 351. https://doi.org/10.3390/ horticulturae7100351 DOI: https://doi.org/10.3390/horticulturae7100351
Prakash, P., Kumar, M., Kumari, N., Prakash, S., et al. (2021b) Therapeutic uses of wild plants by rural inhabitants of Maraog region in district Shimla, Himachal Pradesh, India. Horticulturae, 7(10), 343. https://doi.org/10.3390/horticulturae7100343 DOI: https://doi.org/10.3390/horticulturae7100343
Poudel, P., Froehlich, K., Casper, D.P., & St-Pierre, B. (2019). Feeding essential oils to neonatal Holstein dairy calves results in increased ruminal prevotellaceae abundance and propionate concentrations. Microorganisms, 7(5), 120. https://doi.org/ 10.3390/microorganisms7050120 DOI: https://doi.org/10.3390/microorganisms7050120
Rapper, S.L., Tankeu, S.Y., Kamatou, G., Viljoen, A., & Vuuren, S. (2021). The use of chemometric modelling to determine chemical composition-antimicrobial activity relationships of essential oils used in respiratory tract infections. Fitoterapia, 154, 105024. https://doi.org/10.1016/j.fitote.2021.105024 DOI: https://doi.org/10.1016/j.fitote.2021.105024
Raybaudi-Massilia, R.M., Mosqueda-Melgar, J., Soliva-Fortuny, R., & Martin-Belloso, O. (2009). Control of pathogenic and spoilage microorganisms in fresh cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Review in Food Science Food Safety, 8(3), 157-180. https://doi.org/10.1111/j.1541-4337.2009.00076.x DOI: https://doi.org/10.1111/j.1541-4337.2009.00076.x
Reshi, I.A., Sarkar, T.K., Malik, H., Muhee, A., & Shoukat, S. (2017). Efficacy of Fumaria indica, Nepata cataria and Adianthum capillus crude aqueous extracts in comparison to cefuroxime in sub-clinical cases of bovine mastitis. International Journal of Livestock Research, 7, 100–107. http://dx.doi.org/10.5455/ ijlr.20170212032414 DOI: https://doi.org/10.5455/ijlr.20170212032414
Rivaroli, D.C., Guerrero, A., Valero, M.V., Zawadzki, F., et al. (2016). Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots. Meat Science, 121, 278–284. https://doi.org/10.1016/j.meatsci.2016.06.017 DOI: https://doi.org/10.1016/j.meatsci.2016.06.017
Sakkas, H., & Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of Microbiology and Biotechnology, 27(3), 429–438. https://doi.org/10.4014/ jmb.1608.08024 DOI: https://doi.org/10.4014/jmb.1608.08024
Saleena, L.A.K., Chandran, D., Geetha, R., Radha, R., & Sathian, C.T. (2022a). Optimization and identification of lactic acid bacteria with higher mannitol production Potential. Indian Journal of Animal Research, 1, 8. https://doi.org/10.18805/IJAR.B-4759 DOI: https://doi.org/10.18805/IJAR.B-4759
Saleena, L.A.K., Chandran, D., Rayirath, G., Shanavas, A., Rajalingam, S., Vishvanathan, M., Sharun, K., & Dhama, K. (2022b). Development of low-calorie functional yoghurt by incorporating mannitol producing lactic acid bacteria (Leuconostoc pseudomesenteroides) in the standard yoghurt culture. Journal of Pure and Applied Microbiology, 16(1), 729-736. https://doi.org/10.22207/JPAM.16.1.78 DOI: https://doi.org/10.22207/JPAM.16.1.78
Salehi, B., Mishra, A.P., Shukla, I., Sharifi-Rad, M., et al. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9), 1688–1706. https://doi.org/10.1002/ptr.6109 DOI: https://doi.org/10.1002/ptr.6109
Sanchez-Moreno, C. (2002). Review: Methods used to evaluate the free radical scavenging activity in foods in biological systems. Food Science and Technology International, 8(3), 121-137. https://doi.org/10.1106/108201302026770 DOI: https://doi.org/10.1177/1082013202008003770
Sandner, G., Heckmann, M., & Weghuber, J. (2020). Immunomodulatory activities of selected essential oils. Biomolecules, 10(8), 1139. https://doi.org/10.3390/biom10081139 DOI: https://doi.org/10.3390/biom10081139
Schabauer, L., Steflitsch, W., Buchbauer, G. (2017) Essential Oils and Compounds against Pains in Animal Studies. Natural Product Communications, 12(7). doi:10.1177/1934578X1701200734. DOI: https://doi.org/10.1177/1934578X1701200734
Sharma, R., Rao, R., Kumar, S., Mahant, S., & Khatkar, S. (2019). Therapeutic potential of citronella essential oil: A review. Current drug discovery technologies, 16(4), 330–339. https://doi.org/ 10.2174/1570163815666180718095041 DOI: https://doi.org/10.2174/1570163815666180718095041
Seyidoglu, N., Koseli, E., Gurbanli, R., & Aydin, C.. (2021). Role of essential oils in antioxidant capacity and immunity in a rat model of mixed stress. South African Journal of Animal Science, 51(4), 426-436. https://dx.doi.org/10.4314/sajas.v51i4.2. DOI: https://doi.org/10.4314/sajas.v51i4.2
Sharun, K., Haritha, C.V., Jambagi, K., Chandran, D., Yatoo, M.I., Tuli, H.S., & Dhama, K. (2021). Potential herbs for the management of urolithiasis in veterinary medicine -A mini review. The Indian Veterinary Journal, 98(06), 09-16.
Simitzis, P.E. (2017) Enrichment of Animal Diets with Essential Oils-A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines (Basel), 4(2):35. doi: 10.3390/medicines4020035. DOI: https://doi.org/10.3390/medicines4020035
Skandamis, PN., & Nychas, G.J. (2001). Effect of oregano essential oil on microbiological and physico-chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology, 91(6), 1011-1022. https://doi.org/10.1046/ j.1365-2672.2001.01467.x DOI: https://doi.org/10.1046/j.1365-2672.2001.01467.x
Soltan, Y.A., Natel, A.S., Araujo, R.C., Morsy, A.S., & Abdalla, A.L. (2018). Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Animal Feed Science and Technology, 237, 8–18. https://doi.org/10.1016/j.anifeedsci.2018.01.004 DOI: https://doi.org/10.1016/j.anifeedsci.2018.01.004
Tassou, C.C., Drosinos, E.H., & Nychas, G.J. (1995). Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4℃ and 10℃. Journal of Applied Bacteriology, 78(6), 593-600. https://doi.org/10.1111/j.1365-2672.1995.tb03104.x DOI: https://doi.org/10.1111/j.1365-2672.1995.tb03104.x
Tiwari, R., Latheef, S.K., Ahmed, I., Iqbal, H.M.N., et al. (2018). Herbal immunomodulators - A remedial panacea for designing and developing effective drugs and medicines: current scenario and future prospects. Current Drug Metabolism, 19(3), 264-301. https://doi.org/10.2174/1389200219666180129125436. DOI: https://doi.org/10.2174/1389200219666180129125436
Uddin, T.M., Chakraborty, A.J., Khusro, A., Zidan, B.R.M., et al. (2021) Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12): 1750-1766. DOI: https://doi.org/10.1016/j.jiph.2021.10.020
Ultee, A., Kets, E.P., Alberda, M., Hoekstra, F.A., & Smid, E.J. (2000). Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of microbiology, 174(4), 233–238. https://doi.org/10.1007/s002030000199 DOI: https://doi.org/10.1007/s002030000199
Ultee, A., Bennik, M.H., & Moezelaar, R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561–1568. https://doi.org/10.1128/ AEM.68.4.1561-1568.2002 DOI: https://doi.org/10.1128/AEM.68.4.1561-1568.2002
Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiology and Molecular Biology Reviews, 56(3), 395-411. https://doi.org/10.1128/mr.56.3.395-411.1992 DOI: https://doi.org/10.1128/mr.56.3.395-411.1992
Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., & Gil, Á. (2019). Antimicrobial, antioxidant, and immunomodulatory
properties of essential oils: A systematic review. Nutrients, 11(11), 2786. https://doi.org/10.3390/nu11112786 DOI: https://doi.org/10.3390/nu11112786
Wilkinson, J.M., Hipwell, M., Ryan, T., & Cavanagh, H.M. (2003). Bioactivity of Backhousia citriodora: Antibacterial and antifungal activity. Journal of Agricultural and Food Chemistry, 51(1), 76-81. https://doi.org/10.1021/jf0258003 DOI: https://doi.org/10.1021/jf0258003
Windisch, W., Schedle, K., Plitzner, C., & Kroismayr, A. (2008). Use of phytogenic products as feed additives for swine and poultry. Journal of Animal Science, 86(14), 140-148. https://doi.org/10.2527/jas.2007-0459 DOI: https://doi.org/10.2527/jas.2007-0459
Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents-myth or real alternative?. Molecules (Basel, Switzerland), 24(11), 2130. https://doi.org/10.3390/molecules24112130 DOI: https://doi.org/10.3390/molecules24112130
Yadav, A.S., Kolluri, G., Gopi, M, Karthik, K., Malik, Y.S., & Dhama, K. (2016) Exploring alternatives to antibiotics as health promoting agents in poultry- a review. Journal of Experimental Biology and Agricultural Sciences, 4(3): 368-383. DOI: https://doi.org/10.18006/2016.4(3S).368.383
Zeng, Z., Zhang, S., Wang, H., & Piao, X. (2015). Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. Journal of Animal Science and Biotechnology, 6, 7. https://doi.org/10.1186/s40104-015-0004-5 DOI: https://doi.org/10.1186/s40104-015-0004-5
Zhang, L., Gao, F., Ge, J., Li, H., et al. (2022). Potential of aromatic plant-derived essential oils for the control of foodborne bacteria and antibiotic resistance in animal production: A Review. Antibiotics (Basel, Switzerland), 11(11), 1673. https://doi.org/10.3390/antibiotics11111673 DOI: https://doi.org/10.3390/antibiotics11111673
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.