A Study of the Photodegradation Carbofuran and its Metabolites in Paddy Water Samples

Authors

DOI:

https://doi.org/10.18006/2023.11(2).394.404

Keywords:

Carbofuran, Carbofuran-phenol, 3-keto carbofuran, Degradation, Metabolites, Paddy water, Photodegradation

Abstract

Rice fields are one of the agricultural sectors in Malaysia that are heavily pesticide-treated. This study aimed to determine how carbofuran degrades in paddy water and how carbofuran metabolites such as carbofuran-phenol and 3-keto carbofuran reacted during the degradation. The experiment was conducted in two distinct conditions: the first water sample was exposed to sunlight, while the second water sample remained in the dark. During the 56 days of observation, the study discovered carbofuran decomposed slowly in both conditions. The water sample exposed to sunlight showed a faster degradation rate (0.04/day carbofuran) than the water kept in the dark (0.0186/day). The results also demonstrated that photolysis and hydrolysis enhanced the carbofuran degradation in the water. Both 3-keto carbofuran and carbofuran-phenol were detected as metabolites with low concentration levels, ranging from 0.03±0.301 to 0.23±0.142 ppm. These metabolites are considered 'emerging pollutants' as they can be detected in the environment and may post-treat as much as the parent compounds themselves. Hence, this study is trying to fill the research gap to assess the route and rate of carbofuran and its transformation products.

 

 

Author Biography

Harlina Ahmad, Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia

 

 

References

Aisha, S. M., Thamrin, N. M., Ghazali, M. F., Ibrahim, N. N. L. N., & Ali, M. S. A. M. (2022). Non-Linear Autoregressive Dissolved Oxygen Prediction Model for Paddy Irrigation Channel. Technology Education Mangement Journal, 11(2), 842. DOI: https://doi.org/10.18421/TEM112-43

Aqmal-Naser, M., & Ahmad, A. B. (2018). Ichthyofauna in rice agroecosystem at Seberang Perai Tengah, Pulau Pinang, Malaysia with notes on the introduced species. Journal of Agrobiotechnology, 9(1), 27–40.

Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. DOI: https://doi.org/10.1016/j.agee.2007.07.011

Atwan, A. A., Elmehasseb, I. M., Talha, N., & El‐Kemary, M. (2020). Parameters affecting carbofuran photocatalytic degradation in water using ZnO nanoparticles. Journal of the Chinese Chemical Society, 67(10), 1833–1842. DOI: https://doi.org/10.1002/jccs.201900532

Bachman, J., & Patterson, H.H. (1999). Photodecomposition of the Carbamate Pesticide Carbofuran: Kinetics and the Influence of Dissolved Organic Matter. Environmental Science & Technology, 33 (6), 874–881. DOI: https://doi.org/10.1021/es9802652

Bhattacharjee, S., Fakhruddin, A. N. M., Chowdhury, M. A. Z., Rahman, M. A., & Alam, M. K. (2012). Monitoring of Selected Pesticides Residue Levels in Water Samples of Paddy Fields and Removal of Cypermethrin and Chlorpyrifos Residues from Water Using Rice Bran. Bulletin of Environmental Contamination and Toxicology, 89(2), 348–353. https://doi.org/10.1007/s00128-012-0686-8 DOI: https://doi.org/10.1007/s00128-012-0686-8

Boonkhao, L., Phonkaew, S., Kwonpongsagoon, S., & Rattanachaikunsopon, P. (2022). Carbofuran residues in soil and consumption risks among farmers growing vegetables in Ubon Ratchathani Province, Thailand. AIMS Environmental Science, 9(5), 593–602. DOI: https://doi.org/10.3934/environsci.2022035

Campbell, S., David, M. D., Woodward, L. A., & Li, Q. X. (2004). Persistence of carbofuran in marine sand and water. Chemosphere, 54(8), 1155–1161. DOI: https://doi.org/10.1016/j.chemosphere.2003.09.018

Chae, Y., & An, YJ (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395. DOI: https://doi.org/10.1016/j.envpol.2018.05.008

Chaudhari, Y. S., Kumar, P., Soni, S., Gacem, A., Kumar, V., et al. (2023). An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicology and applied pharmacology, 466, 116449. https://doi.org/10.1016/j.taap.2023.116449. DOI: https://doi.org/10.1016/j.taap.2023.116449

Chen, R., Yin, H., Zhang, C., Luo, X., & Liang, G. (2018). Hydrolysis of a neonicotinoid: a theoretical study on the reaction mechanism of dinotefuran. Structural Chemistry, 29, 315–325. DOI: https://doi.org/10.1007/s11224-017-1030-z

Cid, A., Astray, G., Morales, J., Mejuto, J. C., & Simal-Gándara, J. (2018). Influence of b-Cyclodextrins upon the Degradation of Carbofuran Derivatives. Journal of Pesticides and Biofertilizers, 1, 1–4.

Cromlab. (2010). Carbofuran. 3.

Ćwieląg-Piasecka, I., Debicka, M., & Medyńska-Juraszek, A. (2021). Effectiveness of Carbaryl, Carbofuran and Metolachlor Retention in Soils under the Influence of Different Colloid. Minerals, 11(9), 924. DOI: https://doi.org/10.3390/min11090924

Davenport, R., Curtis‐Jackson, P., Dalkmann, P., Davies, J., Fenner, K., Hand, L., McDonough, K., Ott, A., Ortega‐Calvo, J. J., & Parsons, J. R. (2022). Scientific concepts and methods for moving persistence assessments into the 21st century. Integrated Environmental Assessment and Management, 18(6), 1454–1487. DOI: https://doi.org/10.1002/ieam.4575

De Azeredo Morgado, M. G., Passos, C. J. S., Garnier, J., de Lima, L. A., de Alcântara Mendes, R., Samson-Brais, É., & Lucotte, M. (2023). Large-scale agriculture and environmental pollution of ground and surface water and sediment by pesticides in the Brazilian Amazon: the case of the Santarém region. Water, Air, & Soil Pollution, 234(3), 150. DOI: https://doi.org/10.1007/s11270-023-06152-8

Ecobichon, D. (2019). Carbamic Acid Ester Insecticides. In Pesticides and Neurological Diseases (pp. 263–302). CRC Press, Boca Raton.

Elsheikh, M. A. A. (2020). Degradation kinetics Of carbofuran insecticide in tomato fruits. European Chemical Bulletin, 9(12), 355–359. DOI: https://doi.org/10.17628/ecb.2020.9.355-359

Farahani, G. H. N., Zuriati, Z., Aini, K., & Ismail, B. S. (2012). Persistence of carbofuran in Malaysian waters. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(5), 616–623.

Ferrari, G. C. P., Rheingantz, M. L., Rajão, H., & Lorini, M. L. (2023). Wanted: A systematic review of the most trafficked songbirds in a Neotropical hotspot. Frontiers in Forests and Global Change, 6, :930668. https://doi.org/10.3389/ffgc.2023.930668. DOI: https://doi.org/10.3389/ffgc.2023.930668

Field, J. A. (2013). Environmental Fate of Pesticides. Oregon State University Department of Environmental and Molecular Toxicology, Non-Crop Vegetation Management Course.

Foguesatto, C. R., & Machado, J. A. D. (2022). Adoption of sustainable agricultural practices in Brazil: understanding the influence of socioeconomic and psychological factors. Journal of Agribusiness in Developing and Emerging Economies, 12(2), 204–222. DOI: https://doi.org/10.1108/JADEE-11-2020-0256

Gaur, N., Narasimhulu, K., & PydiSetty, Y. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. DOI: https://doi.org/10.1016/j.jclepro.2018.07.076

Goh, M. S., Lam, S. D., Yang, Y., Naqiuddin, M., Addis, S. N. K., Yong, W. T. L., Luang-In, V., Sonne, C., & Ma, N. L. (2021). Omics technologies used in pesticide residue detection and mitigation in crop. Journal of Hazardous Materials, 420, 126624. DOI: https://doi.org/10.1016/j.jhazmat.2021.126624

Harmoko, H., Putra, G. K., Munawar, H., Lioe, H. N., & Andarwulan, N. (2023). Thermochemical degradation investigation of pesticide residues in banana homogenate. Food Control, 143, 109329. DOI: https://doi.org/10.1016/j.foodcont.2022.109329

Hijosa-Valsero, M., Bécares, E., Fernández-Aláez, C., Fernández-Aláez, M., Mayo, R., & Jiménez, J. J. (2016). Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Science of the Total Environment, 544, 797–810. DOI: https://doi.org/10.1016/j.scitotenv.2015.11.160

Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2008). A multi-residue method for the analysis of pesticides and pesticide degradates in water using HLB solid-phase extraction and gas chromatography-ion trap mass spectrometry. Bulletin of Environmental Contamination and Toxicology, 80(2), 139–144. https://doi.org/10.1007/s00128-007-9332-2 DOI: https://doi.org/10.1007/s00128-007-9332-2

Howard, P H. (2017) Handbook of environmental fate and exposure data for organic chemicals. Routledge, United States. DOI: https://doi.org/10.1201/9780203719305

Ismail, B. S., Siti, H. H., & Talib, L. (2012). Pesticide residue levels in the surface water of the irrigation canals in The Muda Irrigation Scheme Kedah, Malaysia. International Journal of Basic & Applied Sciences, 12(6), 85–90.

Iwafune T. (2018). Studies on the behavior and ecotoxicity of pesticides and their transformation products in a river. Journal of pesticide science, 43(4), 297–304. https://doi.org/10.1584/ jpestics.J18-01. DOI: https://doi.org/10.1584/jpestics.J18-01

Jain, M. (2021). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. South Asian Journal of Marketing & Management Research, 11(11), 115–120. DOI: https://doi.org/10.5958/2249-877X.2021.00106.5

Kamarudina, M. K. A., Abd Wahabb, N., Samahc, M. A. A., Saudid, A. S. M., Ismailb, A., et al. (2020). Assessing of water quality and sedimentation problems in Lata Sungai Limau, Malaysia. Environment, 21, 22. DOI: https://doi.org/10.5004/dwt.2020.25269

Katagi T. (2016). Pesticide behavior in modified water-sediment systems. Journal of pesticide science, 41(4), 121–132. https://doi.org/10.1584/jpestics.D16-060. DOI: https://doi.org/10.1584/jpestics.D16-060

Kaur, R., Singh, D., Kumari, A., Sharma, G., Rajput, S., & Arora, S. (2021). Pesticide residues degradation strategies in soil and water: a review. International Journal of Environmental Science and Technology, 20(11), 1–24. DOI: https://doi.org/10.1007/s13762-021-03696-2

Khalid, S., Shahid, M., Murtaza, B., Bibi, I., Naeem, M. A., & Niazi, N. K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711, 134645. DOI: https://doi.org/10.1016/j.scitotenv.2019.134645

Khan, M. A., Sharma, A., Yadav, S., & Sharma, S. (2020). Rhizospheric Microbes as Potential Tool for Remediation of Carbofuran: An Overview. In: S.K. Sharma, U.B. Singh, , PK Sahu, H.V. Singh, & P.K. Sharma, (eds) Rhizosphere Microbes (pp. 557–571). Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_23 DOI: https://doi.org/10.1007/978-981-15-9154-9_23

Kim, K., & Kim, Y.-H. (2002). Aqueous Photolysis of the Organophosphorus Insecticide Carbofuran. Korean Journal of Environmental Agriculture, 21(3), 172–177. DOI: https://doi.org/10.5338/KJEA.2002.21.3.172

Lan, J., Sun, W., Chen, L., Zhou, H., Fan, Y., Diao, X., Wang, B., & Zhao, H. (2020). Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food and Agricultural Immunology, 31(1), 165–175. DOI: https://doi.org/10.1080/09540105.2019.1708272

Lee, H.J., Kim, C., Ryu, H.-D., Chung, E. G., Shin, D., & Lee, J. K. (2020). Simultaneous determination of pesticides and veterinary pharmaceuticals in environmental water samples by UHPLC–Quadrupole-Orbitrap HRMS combined with on-Line Solid-Phase Extraction. Separations, 7(1), 14. DOI: https://doi.org/10.3390/separations7010014

Lewis, S. E., Silburn, D. M., Kookana, R. S., & Shaw, M. (2016). Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. Journal of Agricultural and Food Chemistry, 64(20), 3917–3924. DOI: https://doi.org/10.1021/acs.jafc.6b01320

López-Felices, B., Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., & Román-Sánchez, I. M. (2023). Factors influencing the use of rainwater for agricultural irrigation: the case of greenhouse agriculture in southeast Spain. AQUA-Water Infrastructure, Ecosystems and Society, 72(2), 185–201. DOI: https://doi.org/10.2166/aqua.2023.205

Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 593, 787–795. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.202

Martínez Vidal, J. L., Espada, M. C., Frenich, A. G., & Arrebola, F. J. (2000). Pesticide trace analysis using solid-phase extraction and gas chromatography with electron-capture and tandem mass spectrometric detection in water samples. Journal of chromatography. A, 867(1-2), 235–245. https://doi.org/10.1016/ s0021-9673(99)01082-1. DOI: https://doi.org/10.1016/S0021-9673(99)01082-1

Masoner, J. R., Kolpin, D. W., Cozzarelli, I. M., Barber, L. B., Burden, D. S., Foreman, W. T., Forshay, K. J., Furlong, E. T., Groves, J. F., & Hladik, M. L. (2019). Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environmental Science & Technology, 53(17), 10070–10081. DOI: https://doi.org/10.1021/acs.est.9b02867

Matthies, M., & Beulke, S. (2017). Considerations of temperature in the context of the persistence classification in the EU. Environmental Sciences Europe, 29(1), 15. https://doi.org/10.1186/ s12302-017-0113-1 DOI: https://doi.org/10.1186/s12302-017-0113-1

Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 127419. DOI: https://doi.org/10.1016/j.chemosphere.2020.127419

Mohamed, B., Rachid, M., & Amina, A. (2021). Study on Biodegradation and Dissipation of 14 C-Carbofuran in Clay Soil from Loukkos Perimeter, Northwestern Morocco. New Ideas Concerning Science and Technology, 7, 92–103. DOI: https://doi.org/10.9734/bpi/nicst/v7/2709D

Mudhoo, A., Bhatnagar, A., Rantalankila, M., Srivastava, V., & Sillanpää, M. (2019). Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: a review. Chemical Engineering Journal, 360, 912–928. DOI: https://doi.org/10.1016/j.cej.2018.12.055

Mustaffha, S., & Sabran, M. S. (2020). River Water Quality Monitoring at Paddy Field in Merlimau, Melaka. Advances in Agricultural and Food Research Journal. https://doi.org/10.36877/aafrj.a0000286, DOI: https://doi.org/10.36877/aafrj.a0000286

Nieder, R., Benbi, D.K., Reichl, F.X. (2018). Health Risks Associated with Pesticides in Soils. In: Soil Components and Human Health, (503-573). Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1222-2_10 DOI: https://doi.org/10.1007/978-94-024-1222-2_10

Nollet, L. M. L., & Rathore, H. S. (2016). Handbook of pesticides: methods of pesticide residues analysis. CRC press. DOI: https://doi.org/10.1201/9781420082470

Osesua, B. A., Anyekema, M., Tsafe, A. I., & Malik, A. I. (2017). Distribution of pesticide residues in water and sediment samples collected from Lugu dam in Wurno irrigation area, Sokoto state, Nigeria. International Journal of Chemistry and Chemical Processes, 3(2), 2545–5265.

Parte, S. G., Mohekar, A. D., & Kharat, A. S. (2017). Microbial degradation of pesticide: a review. African Journal of Microbiology Research, 11(24), 992–1012. DOI: https://doi.org/10.5897/AJMR2016.8402

Peña, A., Delgado-Moreno, L., & Rodríguez-Liébana, J. A. (2020). A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Science of the Total Environment, 718, 134468. DOI: https://doi.org/10.1016/j.scitotenv.2019.134468

Ramasubramanian, T., & Paramasivam, M. (2018). Persistence and metabolism of carbofuran in the soil and sugarcane plant. Environmental Monitoring and Assessment, 190(9), 1–9. DOI: https://doi.org/10.1007/s10661-018-6926-6

Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/https://doi.org/ 10.1016/j.ceja.2022.100301 DOI: https://doi.org/10.1016/j.ceja.2022.100301

Remucal, C. K. (2014). The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environmental Science: Processes & Impacts, 16(4), 628–653. DOI: https://doi.org/10.1039/c3em00549f

Ripp, J. (1996). Analytical detection limit guidance & laboratory guide for determining method detection limits. [Madison, WI] : Wisconsin Dept. of Natural Resources, Laboratory Certification Program, [1996]. Retrived from https://search.library.wisc.edu/catalog/999788165802121

Riyaz, M., Mathew, P., Shah, R. A., Sivasankaran, K., & Zuber, S. M. (2023). Environmental Pesticide Degradation: Mechanisms and Sustainability. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management (pp. 3–51). Apple Academic Press. DOI: https://doi.org/10.1201/9781003281207-2

Seiber, J N, Catahan, M. P., & Barril, C. R. (1978). Loss of carbofuran from rice paddy water: Chemical and physical factors. Journal of Environmental Science and Health, Part B, 13(2), 131–148. https://doi.org/10.1080/03601237809372083 DOI: https://doi.org/10.1080/03601237809372083

Seiber, J. N., & Cahill, T. M. (2022). Pesticides, Organic Contaminants, and Pathogens in Air: Chemodynamics, Health Effects, Sampling, and Analysis. Taylor & Francis. DOI: https://doi.org/10.1201/9781003217602

Shamsudin, M. N., Amir, H. M., & Radam, A. (2010). Economic benefits of sustainable agricultural production: the case of integrated pest management in cabbage production. Environment Asia, 3, 168–174. http://dx.doi.org/10.14456/ea.2010.57.

Sharma, A. K., Sharma, D., & Chopra, A. K. (2020). An overview of pesticides in the development of agriculture crops. Journal of Applied and Natural Science, 12(2), 101–109. DOI: https://doi.org/10.31018/jans.vi.2254

Siddaramappa, R., Tirol, A. C., Seiber, J. N., Heinrichs, E. A., & Watanabe, I. (1978). The degradation of carbofuran in paddy water and flooded soil of untreated and retreated rice fields. Journal of Environmental Science and Health, Part B, 13(4), 369–380. https://doi.org/10.1080/03601237809372103 DOI: https://doi.org/10.1080/03601237809372103

Sim, S. F., Chung, L. Y., Jonip, J., & Chai, L. K. (2020). Uptake and Dissipation of Carbofuran and Its Metabolite in Chinese Kale and Brinjal Cultivated Under Humid Tropic Climate. Advances in Agriculture, 2019, 7937086 | https://doi.org/10.1155/2019/7937086. DOI: https://doi.org/10.1155/2019/7937086

Southwell, R. V, Hilton, S. L., Pearson, J. M., Hand, L. H., & Bending, G. D. (2023). Water flow plays a key role in determining chemical biodegradation in water-sediment systems. Science of The Total Environment, 880, 163282. DOI: https://doi.org/10.1016/j.scitotenv.2023.163282

Srivastava, R. K. (2020). Influence of sustainable agricultural practices on healthy food cultivation. In K. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse (eds) Environmental Biotechnology Vol. 2 (pp. 95–124). Springer. DOI: https://doi.org/10.1007/978-3-030-38196-7_5

Suratman, S., Sailan, M. M., Hee, Y. Y., Bedurus, E. A., & Latif, M. T. (2015). A preliminary study of water quality index in Terengganu River basin, Malaysia. Sains Malaysiana, 44(1), 67–73. DOI: https://doi.org/10.17576/jsm-2015-4401-10

Temgoua, R. C. T., Tonlé, I. K., & Boujtita, M. (2023). Electrochemistry coupled with mass spectrometry for the prediction of the environmental fate and elucidation of the

degradation mechanisms of pesticides: current status and future prospects. Environmental Science: Processes & Impacts, 25, 340-350. DOI https://doi.org/10.1039/D2EM00451H. DOI: https://doi.org/10.1039/D2EM00451H

Tey, Y. S., Li, E., Bruwer, J., Abdullah, A. M., Brindal, M., Radam, A., Ismail, M. M., & Darham, S. (2014). The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustainability Science, 9, 17–29. DOI: https://doi.org/10.1007/s11625-013-0219-3

Tien, C., Huang, H., & Chen, C. S. (2017). Accessing the carbofuran degradation ability of cultures from natural river biofilms in different environments. CLEAN–Soil, Air, Water, 45(5), 1600380. DOI: https://doi.org/10.1002/clen.201600380

Vishnuganth, M. A., Remya, N., Kumar, M., & Selvaraju, N. (2017). Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. Journal of Environmental Science and Health, Part B, 52(5), 353–360. https://doi.org/10.1080/ 03601234.2017.1283141 DOI: https://doi.org/10.1080/03601234.2017.1283141

Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., & Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789. DOI: https://doi.org/10.1016/j.chemosphere.2015.11.002

Wang, R., Bingner, R. L., Yuan, Y., Locke, M., Herring, G., Denton, D., & Zhang, M. (2021). Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system. Science of The Total Environment, 767, 144898. DOI: https://doi.org/10.1016/j.scitotenv.2020.144898

Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.293

Downloads

Published

2023-04-30

How to Cite

Haji Baharudin, N. S., & Ahmad, H. (2023). A Study of the Photodegradation Carbofuran and its Metabolites in Paddy Water Samples. Journal of Experimental Biology and Agricultural Sciences, 11(2), 394–404. https://doi.org/10.18006/2023.11(2).394.404

Issue

Section

RESEARCH ARTICLES

Categories