A Study of the Photodegradation Carbofuran and its Metabolites in Paddy Water Samples
DOI:
https://doi.org/10.18006/2023.11(2).394.404Keywords:
Carbofuran, Carbofuran-phenol, 3-keto carbofuran, Degradation, Metabolites, Paddy water, PhotodegradationAbstract
Rice fields are one of the agricultural sectors in Malaysia that are heavily pesticide-treated. This study aimed to determine how carbofuran degrades in paddy water and how carbofuran metabolites such as carbofuran-phenol and 3-keto carbofuran reacted during the degradation. The experiment was conducted in two distinct conditions: the first water sample was exposed to sunlight, while the second water sample remained in the dark. During the 56 days of observation, the study discovered carbofuran decomposed slowly in both conditions. The water sample exposed to sunlight showed a faster degradation rate (0.04/day carbofuran) than the water kept in the dark (0.0186/day). The results also demonstrated that photolysis and hydrolysis enhanced the carbofuran degradation in the water. Both 3-keto carbofuran and carbofuran-phenol were detected as metabolites with low concentration levels, ranging from 0.03±0.301 to 0.23±0.142 ppm. These metabolites are considered 'emerging pollutants' as they can be detected in the environment and may post-treat as much as the parent compounds themselves. Hence, this study is trying to fill the research gap to assess the route and rate of carbofuran and its transformation products.
References
Aisha, S. M., Thamrin, N. M., Ghazali, M. F., Ibrahim, N. N. L. N., & Ali, M. S. A. M. (2022). Non-Linear Autoregressive Dissolved Oxygen Prediction Model for Paddy Irrigation Channel. Technology Education Mangement Journal, 11(2), 842. DOI: https://doi.org/10.18421/TEM112-43
Aqmal-Naser, M., & Ahmad, A. B. (2018). Ichthyofauna in rice agroecosystem at Seberang Perai Tengah, Pulau Pinang, Malaysia with notes on the introduced species. Journal of Agrobiotechnology, 9(1), 27–40.
Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. DOI: https://doi.org/10.1016/j.agee.2007.07.011
Atwan, A. A., Elmehasseb, I. M., Talha, N., & El‐Kemary, M. (2020). Parameters affecting carbofuran photocatalytic degradation in water using ZnO nanoparticles. Journal of the Chinese Chemical Society, 67(10), 1833–1842. DOI: https://doi.org/10.1002/jccs.201900532
Bachman, J., & Patterson, H.H. (1999). Photodecomposition of the Carbamate Pesticide Carbofuran: Kinetics and the Influence of Dissolved Organic Matter. Environmental Science & Technology, 33 (6), 874–881. DOI: https://doi.org/10.1021/es9802652
Bhattacharjee, S., Fakhruddin, A. N. M., Chowdhury, M. A. Z., Rahman, M. A., & Alam, M. K. (2012). Monitoring of Selected Pesticides Residue Levels in Water Samples of Paddy Fields and Removal of Cypermethrin and Chlorpyrifos Residues from Water Using Rice Bran. Bulletin of Environmental Contamination and Toxicology, 89(2), 348–353. https://doi.org/10.1007/s00128-012-0686-8 DOI: https://doi.org/10.1007/s00128-012-0686-8
Boonkhao, L., Phonkaew, S., Kwonpongsagoon, S., & Rattanachaikunsopon, P. (2022). Carbofuran residues in soil and consumption risks among farmers growing vegetables in Ubon Ratchathani Province, Thailand. AIMS Environmental Science, 9(5), 593–602. DOI: https://doi.org/10.3934/environsci.2022035
Campbell, S., David, M. D., Woodward, L. A., & Li, Q. X. (2004). Persistence of carbofuran in marine sand and water. Chemosphere, 54(8), 1155–1161. DOI: https://doi.org/10.1016/j.chemosphere.2003.09.018
Chae, Y., & An, YJ (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 240, 387–395. DOI: https://doi.org/10.1016/j.envpol.2018.05.008
Chaudhari, Y. S., Kumar, P., Soni, S., Gacem, A., Kumar, V., et al. (2023). An inclusive outlook on the fate and persistence of pesticides in the environment and integrated eco-technologies for their degradation. Toxicology and applied pharmacology, 466, 116449. https://doi.org/10.1016/j.taap.2023.116449. DOI: https://doi.org/10.1016/j.taap.2023.116449
Chen, R., Yin, H., Zhang, C., Luo, X., & Liang, G. (2018). Hydrolysis of a neonicotinoid: a theoretical study on the reaction mechanism of dinotefuran. Structural Chemistry, 29, 315–325. DOI: https://doi.org/10.1007/s11224-017-1030-z
Cid, A., Astray, G., Morales, J., Mejuto, J. C., & Simal-Gándara, J. (2018). Influence of b-Cyclodextrins upon the Degradation of Carbofuran Derivatives. Journal of Pesticides and Biofertilizers, 1, 1–4.
Cromlab. (2010). Carbofuran. 3.
Ćwieląg-Piasecka, I., Debicka, M., & Medyńska-Juraszek, A. (2021). Effectiveness of Carbaryl, Carbofuran and Metolachlor Retention in Soils under the Influence of Different Colloid. Minerals, 11(9), 924. DOI: https://doi.org/10.3390/min11090924
Davenport, R., Curtis‐Jackson, P., Dalkmann, P., Davies, J., Fenner, K., Hand, L., McDonough, K., Ott, A., Ortega‐Calvo, J. J., & Parsons, J. R. (2022). Scientific concepts and methods for moving persistence assessments into the 21st century. Integrated Environmental Assessment and Management, 18(6), 1454–1487. DOI: https://doi.org/10.1002/ieam.4575
De Azeredo Morgado, M. G., Passos, C. J. S., Garnier, J., de Lima, L. A., de Alcântara Mendes, R., Samson-Brais, É., & Lucotte, M. (2023). Large-scale agriculture and environmental pollution of ground and surface water and sediment by pesticides in the Brazilian Amazon: the case of the Santarém region. Water, Air, & Soil Pollution, 234(3), 150. DOI: https://doi.org/10.1007/s11270-023-06152-8
Ecobichon, D. (2019). Carbamic Acid Ester Insecticides. In Pesticides and Neurological Diseases (pp. 263–302). CRC Press, Boca Raton.
Elsheikh, M. A. A. (2020). Degradation kinetics Of carbofuran insecticide in tomato fruits. European Chemical Bulletin, 9(12), 355–359. DOI: https://doi.org/10.17628/ecb.2020.9.355-359
Farahani, G. H. N., Zuriati, Z., Aini, K., & Ismail, B. S. (2012). Persistence of carbofuran in Malaysian waters. American-Eurasian Journal of Agricultural & Environmental Sciences, 12(5), 616–623.
Ferrari, G. C. P., Rheingantz, M. L., Rajão, H., & Lorini, M. L. (2023). Wanted: A systematic review of the most trafficked songbirds in a Neotropical hotspot. Frontiers in Forests and Global Change, 6, :930668. https://doi.org/10.3389/ffgc.2023.930668. DOI: https://doi.org/10.3389/ffgc.2023.930668
Field, J. A. (2013). Environmental Fate of Pesticides. Oregon State University Department of Environmental and Molecular Toxicology, Non-Crop Vegetation Management Course.
Foguesatto, C. R., & Machado, J. A. D. (2022). Adoption of sustainable agricultural practices in Brazil: understanding the influence of socioeconomic and psychological factors. Journal of Agribusiness in Developing and Emerging Economies, 12(2), 204–222. DOI: https://doi.org/10.1108/JADEE-11-2020-0256
Gaur, N., Narasimhulu, K., & PydiSetty, Y. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. DOI: https://doi.org/10.1016/j.jclepro.2018.07.076
Goh, M. S., Lam, S. D., Yang, Y., Naqiuddin, M., Addis, S. N. K., Yong, W. T. L., Luang-In, V., Sonne, C., & Ma, N. L. (2021). Omics technologies used in pesticide residue detection and mitigation in crop. Journal of Hazardous Materials, 420, 126624. DOI: https://doi.org/10.1016/j.jhazmat.2021.126624
Harmoko, H., Putra, G. K., Munawar, H., Lioe, H. N., & Andarwulan, N. (2023). Thermochemical degradation investigation of pesticide residues in banana homogenate. Food Control, 143, 109329. DOI: https://doi.org/10.1016/j.foodcont.2022.109329
Hijosa-Valsero, M., Bécares, E., Fernández-Aláez, C., Fernández-Aláez, M., Mayo, R., & Jiménez, J. J. (2016). Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments. Science of the Total Environment, 544, 797–810. DOI: https://doi.org/10.1016/j.scitotenv.2015.11.160
Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2008). A multi-residue method for the analysis of pesticides and pesticide degradates in water using HLB solid-phase extraction and gas chromatography-ion trap mass spectrometry. Bulletin of Environmental Contamination and Toxicology, 80(2), 139–144. https://doi.org/10.1007/s00128-007-9332-2 DOI: https://doi.org/10.1007/s00128-007-9332-2
Howard, P H. (2017) Handbook of environmental fate and exposure data for organic chemicals. Routledge, United States. DOI: https://doi.org/10.1201/9780203719305
Ismail, B. S., Siti, H. H., & Talib, L. (2012). Pesticide residue levels in the surface water of the irrigation canals in The Muda Irrigation Scheme Kedah, Malaysia. International Journal of Basic & Applied Sciences, 12(6), 85–90.
Iwafune T. (2018). Studies on the behavior and ecotoxicity of pesticides and their transformation products in a river. Journal of pesticide science, 43(4), 297–304. https://doi.org/10.1584/ jpestics.J18-01. DOI: https://doi.org/10.1584/jpestics.J18-01
Jain, M. (2021). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. South Asian Journal of Marketing & Management Research, 11(11), 115–120. DOI: https://doi.org/10.5958/2249-877X.2021.00106.5
Kamarudina, M. K. A., Abd Wahabb, N., Samahc, M. A. A., Saudid, A. S. M., Ismailb, A., et al. (2020). Assessing of water quality and sedimentation problems in Lata Sungai Limau, Malaysia. Environment, 21, 22. DOI: https://doi.org/10.5004/dwt.2020.25269
Katagi T. (2016). Pesticide behavior in modified water-sediment systems. Journal of pesticide science, 41(4), 121–132. https://doi.org/10.1584/jpestics.D16-060. DOI: https://doi.org/10.1584/jpestics.D16-060
Kaur, R., Singh, D., Kumari, A., Sharma, G., Rajput, S., & Arora, S. (2021). Pesticide residues degradation strategies in soil and water: a review. International Journal of Environmental Science and Technology, 20(11), 1–24. DOI: https://doi.org/10.1007/s13762-021-03696-2
Khalid, S., Shahid, M., Murtaza, B., Bibi, I., Naeem, M. A., & Niazi, N. K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711, 134645. DOI: https://doi.org/10.1016/j.scitotenv.2019.134645
Khan, M. A., Sharma, A., Yadav, S., & Sharma, S. (2020). Rhizospheric Microbes as Potential Tool for Remediation of Carbofuran: An Overview. In: S.K. Sharma, U.B. Singh, , PK Sahu, H.V. Singh, & P.K. Sharma, (eds) Rhizosphere Microbes (pp. 557–571). Springer, Singapore. https://doi.org/10.1007/978-981-15-9154-9_23 DOI: https://doi.org/10.1007/978-981-15-9154-9_23
Kim, K., & Kim, Y.-H. (2002). Aqueous Photolysis of the Organophosphorus Insecticide Carbofuran. Korean Journal of Environmental Agriculture, 21(3), 172–177. DOI: https://doi.org/10.5338/KJEA.2002.21.3.172
Lan, J., Sun, W., Chen, L., Zhou, H., Fan, Y., Diao, X., Wang, B., & Zhao, H. (2020). Simultaneous and rapid detection of carbofuran and 3-hydroxy-carbofuran in water samples and pesticide preparations using lateral-flow immunochromatographic assay. Food and Agricultural Immunology, 31(1), 165–175. DOI: https://doi.org/10.1080/09540105.2019.1708272
Lee, H.J., Kim, C., Ryu, H.-D., Chung, E. G., Shin, D., & Lee, J. K. (2020). Simultaneous determination of pesticides and veterinary pharmaceuticals in environmental water samples by UHPLC–Quadrupole-Orbitrap HRMS combined with on-Line Solid-Phase Extraction. Separations, 7(1), 14. DOI: https://doi.org/10.3390/separations7010014
Lewis, S. E., Silburn, D. M., Kookana, R. S., & Shaw, M. (2016). Pesticide behavior, fate, and effects in the tropics: an overview of the current state of knowledge. Journal of Agricultural and Food Chemistry, 64(20), 3917–3924. DOI: https://doi.org/10.1021/acs.jafc.6b01320
López-Felices, B., Velasco-Muñoz, J. F., Aznar-Sánchez, J. A., & Román-Sánchez, I. M. (2023). Factors influencing the use of rainwater for agricultural irrigation: the case of greenhouse agriculture in southeast Spain. AQUA-Water Infrastructure, Ecosystems and Society, 72(2), 185–201. DOI: https://doi.org/10.2166/aqua.2023.205
Maqueda, C., Undabeytia, T., Villaverde, J., & Morillo, E. (2017). Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Science of the Total Environment, 593, 787–795. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.202
Martínez Vidal, J. L., Espada, M. C., Frenich, A. G., & Arrebola, F. J. (2000). Pesticide trace analysis using solid-phase extraction and gas chromatography with electron-capture and tandem mass spectrometric detection in water samples. Journal of chromatography. A, 867(1-2), 235–245. https://doi.org/10.1016/ s0021-9673(99)01082-1. DOI: https://doi.org/10.1016/S0021-9673(99)01082-1
Masoner, J. R., Kolpin, D. W., Cozzarelli, I. M., Barber, L. B., Burden, D. S., Foreman, W. T., Forshay, K. J., Furlong, E. T., Groves, J. F., & Hladik, M. L. (2019). Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environmental Science & Technology, 53(17), 10070–10081. DOI: https://doi.org/10.1021/acs.est.9b02867
Matthies, M., & Beulke, S. (2017). Considerations of temperature in the context of the persistence classification in the EU. Environmental Sciences Europe, 29(1), 15. https://doi.org/10.1186/ s12302-017-0113-1 DOI: https://doi.org/10.1186/s12302-017-0113-1
Mishra, S., Zhang, W., Lin, Z., Pang, S., Huang, Y., Bhatt, P., & Chen, S. (2020). Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere, 127419. DOI: https://doi.org/10.1016/j.chemosphere.2020.127419
Mohamed, B., Rachid, M., & Amina, A. (2021). Study on Biodegradation and Dissipation of 14 C-Carbofuran in Clay Soil from Loukkos Perimeter, Northwestern Morocco. New Ideas Concerning Science and Technology, 7, 92–103. DOI: https://doi.org/10.9734/bpi/nicst/v7/2709D
Mudhoo, A., Bhatnagar, A., Rantalankila, M., Srivastava, V., & Sillanpää, M. (2019). Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: a review. Chemical Engineering Journal, 360, 912–928. DOI: https://doi.org/10.1016/j.cej.2018.12.055
Mustaffha, S., & Sabran, M. S. (2020). River Water Quality Monitoring at Paddy Field in Merlimau, Melaka. Advances in Agricultural and Food Research Journal. https://doi.org/10.36877/aafrj.a0000286, DOI: https://doi.org/10.36877/aafrj.a0000286
Nieder, R., Benbi, D.K., Reichl, F.X. (2018). Health Risks Associated with Pesticides in Soils. In: Soil Components and Human Health, (503-573). Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1222-2_10 DOI: https://doi.org/10.1007/978-94-024-1222-2_10
Nollet, L. M. L., & Rathore, H. S. (2016). Handbook of pesticides: methods of pesticide residues analysis. CRC press. DOI: https://doi.org/10.1201/9781420082470
Osesua, B. A., Anyekema, M., Tsafe, A. I., & Malik, A. I. (2017). Distribution of pesticide residues in water and sediment samples collected from Lugu dam in Wurno irrigation area, Sokoto state, Nigeria. International Journal of Chemistry and Chemical Processes, 3(2), 2545–5265.
Parte, S. G., Mohekar, A. D., & Kharat, A. S. (2017). Microbial degradation of pesticide: a review. African Journal of Microbiology Research, 11(24), 992–1012. DOI: https://doi.org/10.5897/AJMR2016.8402
Peña, A., Delgado-Moreno, L., & Rodríguez-Liébana, J. A. (2020). A review of the impact of wastewater on the fate of pesticides in soils: Effect of some soil and solution properties. Science of the Total Environment, 718, 134468. DOI: https://doi.org/10.1016/j.scitotenv.2019.134468
Ramasubramanian, T., & Paramasivam, M. (2018). Persistence and metabolism of carbofuran in the soil and sugarcane plant. Environmental Monitoring and Assessment, 190(9), 1–9. DOI: https://doi.org/10.1007/s10661-018-6926-6
Rasool, S., Rasool, T., & Gani, K. M. (2022). A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chemical Engineering Journal Advances, 11, 100301. https://doi.org/https://doi.org/ 10.1016/j.ceja.2022.100301 DOI: https://doi.org/10.1016/j.ceja.2022.100301
Remucal, C. K. (2014). The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environmental Science: Processes & Impacts, 16(4), 628–653. DOI: https://doi.org/10.1039/c3em00549f
Ripp, J. (1996). Analytical detection limit guidance & laboratory guide for determining method detection limits. [Madison, WI] : Wisconsin Dept. of Natural Resources, Laboratory Certification Program, [1996]. Retrived from https://search.library.wisc.edu/catalog/999788165802121
Riyaz, M., Mathew, P., Shah, R. A., Sivasankaran, K., & Zuber, S. M. (2023). Environmental Pesticide Degradation: Mechanisms and Sustainability. In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management (pp. 3–51). Apple Academic Press. DOI: https://doi.org/10.1201/9781003281207-2
Seiber, J N, Catahan, M. P., & Barril, C. R. (1978). Loss of carbofuran from rice paddy water: Chemical and physical factors. Journal of Environmental Science and Health, Part B, 13(2), 131–148. https://doi.org/10.1080/03601237809372083 DOI: https://doi.org/10.1080/03601237809372083
Seiber, J. N., & Cahill, T. M. (2022). Pesticides, Organic Contaminants, and Pathogens in Air: Chemodynamics, Health Effects, Sampling, and Analysis. Taylor & Francis. DOI: https://doi.org/10.1201/9781003217602
Shamsudin, M. N., Amir, H. M., & Radam, A. (2010). Economic benefits of sustainable agricultural production: the case of integrated pest management in cabbage production. Environment Asia, 3, 168–174. http://dx.doi.org/10.14456/ea.2010.57.
Sharma, A. K., Sharma, D., & Chopra, A. K. (2020). An overview of pesticides in the development of agriculture crops. Journal of Applied and Natural Science, 12(2), 101–109. DOI: https://doi.org/10.31018/jans.vi.2254
Siddaramappa, R., Tirol, A. C., Seiber, J. N., Heinrichs, E. A., & Watanabe, I. (1978). The degradation of carbofuran in paddy water and flooded soil of untreated and retreated rice fields. Journal of Environmental Science and Health, Part B, 13(4), 369–380. https://doi.org/10.1080/03601237809372103 DOI: https://doi.org/10.1080/03601237809372103
Sim, S. F., Chung, L. Y., Jonip, J., & Chai, L. K. (2020). Uptake and Dissipation of Carbofuran and Its Metabolite in Chinese Kale and Brinjal Cultivated Under Humid Tropic Climate. Advances in Agriculture, 2019, 7937086 | https://doi.org/10.1155/2019/7937086. DOI: https://doi.org/10.1155/2019/7937086
Southwell, R. V, Hilton, S. L., Pearson, J. M., Hand, L. H., & Bending, G. D. (2023). Water flow plays a key role in determining chemical biodegradation in water-sediment systems. Science of The Total Environment, 880, 163282. DOI: https://doi.org/10.1016/j.scitotenv.2023.163282
Srivastava, R. K. (2020). Influence of sustainable agricultural practices on healthy food cultivation. In K. Gothandam, S. Ranjan, N. Dasgupta, E. Lichtfouse (eds) Environmental Biotechnology Vol. 2 (pp. 95–124). Springer. DOI: https://doi.org/10.1007/978-3-030-38196-7_5
Suratman, S., Sailan, M. M., Hee, Y. Y., Bedurus, E. A., & Latif, M. T. (2015). A preliminary study of water quality index in Terengganu River basin, Malaysia. Sains Malaysiana, 44(1), 67–73. DOI: https://doi.org/10.17576/jsm-2015-4401-10
Temgoua, R. C. T., Tonlé, I. K., & Boujtita, M. (2023). Electrochemistry coupled with mass spectrometry for the prediction of the environmental fate and elucidation of the
degradation mechanisms of pesticides: current status and future prospects. Environmental Science: Processes & Impacts, 25, 340-350. DOI https://doi.org/10.1039/D2EM00451H. DOI: https://doi.org/10.1039/D2EM00451H
Tey, Y. S., Li, E., Bruwer, J., Abdullah, A. M., Brindal, M., Radam, A., Ismail, M. M., & Darham, S. (2014). The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustainability Science, 9, 17–29. DOI: https://doi.org/10.1007/s11625-013-0219-3
Tien, C., Huang, H., & Chen, C. S. (2017). Accessing the carbofuran degradation ability of cultures from natural river biofilms in different environments. CLEAN–Soil, Air, Water, 45(5), 1600380. DOI: https://doi.org/10.1002/clen.201600380
Vishnuganth, M. A., Remya, N., Kumar, M., & Selvaraju, N. (2017). Carbofuran removal in continuous-photocatalytic reactor: Reactor optimization, rate-constant determination and carbofuran degradation pathway analysis. Journal of Environmental Science and Health, Part B, 52(5), 353–360. https://doi.org/10.1080/ 03601234.2017.1283141 DOI: https://doi.org/10.1080/03601234.2017.1283141
Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., & Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789. DOI: https://doi.org/10.1016/j.chemosphere.2015.11.002
Wang, R., Bingner, R. L., Yuan, Y., Locke, M., Herring, G., Denton, D., & Zhang, M. (2021). Evaluation of thiobencarb runoff from rice farming practices in a California watershed using an integrated RiceWQ-AnnAGNPS system. Science of The Total Environment, 767, 144898. DOI: https://doi.org/10.1016/j.scitotenv.2020.144898
Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922. DOI: https://doi.org/10.1016/j.scitotenv.2017.08.293
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.