Effect of AM fungi during salt stress on biochemical content in Ginger (Zingiber officinale Rosc.)

Authors

  • Kishor Bhosale Department of Botany, Nowrosjee Wadia College, 19, V. K. Joag Road Pune 411001, Pune (Maharashtra) India 411001
  • Bharat Shinde V.P.A.S.C. College, Baramati District Pune, (Maharashtra) India

DOI:

https://doi.org/10.18006/2023.11(2).297.305

Keywords:

AM fungi, Chlorophyll, Nucleic acids, Proteins, Proline, Reducing sugars, Total soluble carbohydrates

Abstract

Ginger (Zingiber officinale Rosc.) is a highly-grown spice crop; its aromatic rhizomes are commercially important due to its high importance in the diet as a spice and some medicinal values. Irrigation methods in India increase salt content in the soil. Arbuscular Mycorrhizal (AM) fungi assist plants under salt stress. However, the vital role of mycorrhizal fungi in ginger salt tolerance has not been evaluated yet and needs to emphasize on its evaluation. The present investigation was conducted to assess the efficacy of AM fungi on ginger plants grown under different salt concentrations. In the current investigation level of Chlorophyll, nucleic acids like DNA and RNA, Proteins, Proline, reducing sugars, and total soluble carbohydrates contents have been evaluated to estimate the Growth and biochemical parameters. The study revealed that AM fungi significantly contributed to the salt stress tolerance of Ginger plants. Statistical analysis found an enormously significant correlation between growth parameters and salt tolerance. Pearson correlation coefficient has been used as testimony, resulting in a positive correlation of the use of AM fungi on ginger plant's Growth and biochemical contents.

References

Al-Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10 (2), 51-54. DOI: https://doi.org/10.1007/s005720000055

Amirjani, M. R. (2011). Pigments and Enzyme Activity of Rice. International Journal of Botany, 7 (1), 73-81. DOI: https://doi.org/10.3923/ijb.2011.73.81

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24 (1), 1. DOI: https://doi.org/10.1104/pp.24.1.1

Aziz, M. A., Islam, S., Gani, G., Dar, Z. M., Masood, A., & Baligah, S. H. (2023). AM Fungi as a Potential Biofertilizer for Abiotic Stress Management. Intech Open. doi: 10.5772/intechopen.108537. DOI: https://doi.org/10.5772/intechopen.108537

Baki, G. A. E., Siefritz, F., Man, H. M., Weiner, H., Kaldenhoff, R., & Kaiser, W. M. (2000). Nitrate reductase in Zea mays L. under salinity. Plant, Cell & Environment, 23 (5), 515-521. DOI: https://doi.org/10.1046/j.1365-3040.2000.00568.x

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39 (1), 205-207. DOI: https://doi.org/10.1007/BF00018060

Bial, M. (1902). Estimation of RNA nucleic acid. Den Med Woch, 28, 253. DOI: https://doi.org/10.1055/s-0029-1203493

Bhosale, K. S., & Shinde, B. P. (2011). Influence of arbuscular mycorrhizal fungi on proline and chlorophyll content in Zingiber officinale Rosc grown under water stress. Indian Journal of Fundamental and Applied Life Sciences, 1(3), 172-176.

Blumenthal, M., Goldberg, A., & Brinckmann, J. (2000). Ginger root. In Herbal medicine: Expanded commission E monographs (pp. 153–159). Newton, Massachusetts: Integrative Medicine Communications, Lippincott Williams & Wilkins

Brawerman, G. (1974). In- Methods in Enzymology. 30 (Eds. Moldave and Grossman, L.) Academic Press. New York, p. 605.

Buhl, M. B., & Stewart, C. R. (1983). Effects of NaCl on proline synthesis and utilization in excised barley leaves. Plant physiology, 72 (3), 664-667. DOI: https://doi.org/10.1104/pp.72.3.664

Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical journal, 62 (2), 315. DOI: https://doi.org/10.1042/bj0620315

Chao, W. S., Gu, Y. Q., Pautot, V., Bray, E. A., & Walling, L. L. (1999). Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiology, 120 (4), 979-992. DOI: https://doi.org/10.1104/pp.120.4.979

Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., et al. (2017). CombinedInoculation with multiple arbuscular mycorrhizal fungi improves Growth,nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, 25–16. doi: 10.3389/fmicb.2017.02516. DOI: https://doi.org/10.3389/fmicb.2017.02516

Citronberg, J., Bostick, R., Ahearn, T., Turgeon, D. K., Ruffin, M. T., Djuric, Z., & Zick, S. M. (2013). Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prevention Research, 6 (4), 271-281. DOI: https://doi.org/10.1158/1940-6207.CAPR-12-0327

Dastogeer, K. M., Zahan, M. I., Tahjib-Ul-Arif, M., Akter, M. A., & Okazaki, S. (2020). Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: a meta-analysis. Frontiers in plant science, 11, 588550. DOI: https://doi.org/10.3389/fpls.2020.588550

de Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49 (2), 107-120. DOI: https://doi.org/10.1016/S0098-8472(02)00064-3

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: version II. Plant molecular biology reporter, 1 (4), 19-21. DOI: https://doi.org/10.1007/BF02712670

Dhanapackiam, S., & Ilyas, M. (2010). Effect of salinity on chlorophyll and carbohydrate contents of Sesbania grandiflora seedlings. Indian Journal of Science and technology, 3 (1), 64-66. DOI: https://doi.org/10.17485/ijst/2010/v3i1.20

Doganlar, Z. B., Demir, K., Basak, H., & Gul, I. (2010). Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 5 (15), 2056-2065.

El Moukhtari, A., Cabassa-Hourton, C., Farissi, M., & Savouré, A. (2020). How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in plant science, 11, 1127. DOI: https://doi.org/10.3389/fpls.2020.01127

Elsheery, N. I., & Cao, K. F. (2008). Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum, 30 (6), 769-777. DOI: https://doi.org/10.1007/s11738-008-0179-x

Fougere, F., Le Rudulier, D., & Streeter, J. G. (1991). Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant physiology, 96 (4), 1228-1236. DOI: https://doi.org/10.1104/pp.96.4.1228

Gama, P. B. S., Inanaga, S., Tanaka, K., & Nakazawa, R. (2007). Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of biotechnology, 6 (2), 079-088.

Garg, N., & Cheema, A. (2021). Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress. Ecotoxicology and Environmental Safety, 207, 111196. DOI: https://doi.org/10.1016/j.ecoenv.2020.111196

Gomathi, R., & Vasantha, S. (2006). Change in nucleic acid content and expression of salt shock proteins in relation to salt tolerance in sugarcane. Sugar Tech, 8(2-3), 124-127. DOI: https://doi.org/10.1007/BF02943645

Gupta, S., Thokchom, S. D., & Kapoor, R. (2021). Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Frontiers in Plant Science, 12, 640379. DOI: https://doi.org/10.3389/fpls.2021.640379

Hedge, J. E., Hofreiter, B. T., & Whistler, R. L. (1962). Carbohydrate chemistry. Academic Press, New York, pp.17.

Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology, 11 (2), 379. DOI: https://doi.org/10.5897/AJB11.2572

Kaddes, A., Fauconnier, M. L., Sassi, K., Nasraoui, B., & Jijakli, M. H. (2019). Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules, 24(6), 1065. DOI: https://doi.org/10.3390/molecules24061065

Kerepesi, I., & Galiba, G. (2000). Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Science, 40 (2), 482-487. DOI: https://doi.org/10.2135/cropsci2000.402482x

Liu, Z., Bi, S., Meng, J., Liu, T., Li, P., Yu, C., & Peng, X. (2022). Arbuscular mycorrhizal fungi enhanced rice proline metabolism under low temperature with nitric oxide involvement. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.962460 DOI: https://doi.org/10.3389/fpls.2022.962460

Liu, M. Y., Li, Q. S., Ding, W. Y., Dong, L. W., et al. (2023). Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chemical and Biological Technologies in Agriculture, 10(1), 5. DOI: https://doi.org/10.1186/s40538-022-00368-2

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193, 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Matsubara, Y. I., Okada, T., & Liu, J. (2014). Suppression of Fusarium crown rot and increase in several free amino acids in mycorrhizal asparagus. American Journal of Plant Sciences, http://dx.doi.org/10.4236/ajps.2014.52031 DOI: https://doi.org/10.4236/ajps.2014.52031

Meddich, A., Ouhaddou, R., Anli, M., & Boutasknit, A. (2021). Role of phosphorus and arbuscular mycorrhizal fungi in the growth performances and tolerance of barley to water stress. Plant cell biotechnology and molecular biology, 22(71-72), 45-67.

Meng, L. L., Liu, R. C., Yang, L., Zou, Y. N., Srivastava, A. K., Kuča, K., & Wu, Q. S. (2021). The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. Journal of Fungi, 7(9), 716. DOI: https://doi.org/10.3390/jof7090716

Metwally R. A. (2020). Arbuscular mycorrhizal fungi and Trichoderma viride cooperative effect on biochemical, mineral content, and protein pattern of onion plants. Journal of basic microbiology, 60(8), 712–721. https://doi.org/10.1002/ jobm.202000087 DOI: https://doi.org/10.1002/jobm.202000087

Metwally, R. A., Soliman, S. A., Abdel Latef, A. A. H., & Abdelhameed, R. E. (2021). The individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on Growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicology and environmental safety, 214, 112072. https://doi.org/10.1016/j.ecoenv.2021.112072 DOI: https://doi.org/10.1016/j.ecoenv.2021.112072

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31 (3), 426-428. DOI: https://doi.org/10.1021/ac60147a030

Mitra, D., Uniyal, N., Panneerselvam, P., Senapati, A., & Ganeshamurthy, A. N. (2020). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. International journal of life sciences and applied sciences, 1(1), 1-1.

Munns, R., & Weir, R. (1981). Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels. Functional Plant Biology, 8 (1), 93-105. DOI: https://doi.org/10.1071/PP9810093

Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238-244. DOI: https://doi.org/10.1016/j.indcrop.2015.03.033

Park, E. J., & Pezzuto, J. M. (2002). Botanicals in cancer chemoprevention. Cancer and Metastasis Reviews, 21 (3-4), 231-255. DOI: https://doi.org/10.1023/A:1021254725842

Pirzadah, T. B., Malik, B., Tahir, I., Rehman, R. U., Hakeem, K. R., & Alharby, H. F. (2019). Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species. Plant Physiology and Biochemistry, 144, 178-186. DOI: https://doi.org/10.1016/j.plaphy.2019.09.033

Rabie, G. H. (2005). Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza, 15 (3), 225-230. DOI: https://doi.org/10.1007/s00572-004-0345-y

Rahmaty, R., & Khara, J. (2011). Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turkish Journal of Biology, 35(1), 51-58. DOI: https://doi.org/10.3906/biy-0811-3

Rathert, G. (1984). Sucrose and starch content of plant parts as a possible indicator for salt tolerance. Functional Plant Biology, 11 (6), 491-495. DOI: https://doi.org/10.1071/PP9840491

Ruiz‐Lozano, J. M., Collados, C., Barea, J. M., & Azcón, R. (2001). Arbuscular mycorrhizal symbiosis can alleviate drought‐induced nodule senescence in soybean plants. New Phytologist, 151 (2), 493-502. DOI: https://doi.org/10.1046/j.0028-646x.2001.00196.x

Saboor, A., Ali, M. A., Danish, S., Ahmed, N., et al. (2021). Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Scientific reports, 11(1), 18468.https://doi.org/10.1038/s41598-021-97742-1 DOI: https://doi.org/10.1038/s41598-021-97742-1

Schellenbaum, L., Müller, J., Boller, T., Wiemken, A., & Schüepp, H. (1998). Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. The New Phytologist, 138 (1), 59-66. DOI: https://doi.org/10.1046/j.1469-8137.1998.00892.x

Sewada, S., Usuda, H., &Tsukui, T. (1992). Participation of inorganic orthophosphate in regulation of the ribulose-1, 5-bisphosphate carboxylase activity in response to changes in the photosynthetic source-sink balance. Plant and cell physiology, 33 (7), 943-949.

Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296. DOI: https://doi.org/10.1007/s00572-008-0180-7

Sibole, J. V., Cabot, C., Poschenrieder, C., & Barceló, J. (2003). Efficient leaf ion partitioning, an overriding condition for abscisic acid‐controlled stomatal and leaf growth responses to NaCl salinization in two legumes. Journal of Experimental Botany, 54(390), 2111-2119. DOI: https://doi.org/10.1093/jxb/erg231

Singh, A., Sharma, M. K., & Sengar, R. S. (2017). Osmolytes: Proline metabolism in plants as sensors of abiotic stress. Journal of Applied and Natural Science, 9(4), 2079-2092. DOI: https://doi.org/10.31018/jans.v9i4.1492

Smirnoff, N. (1996). Botanical briefing: the function and metabolism of ascorbic acid in plants. Annals of botany, 78 (6), 661-669. DOI: https://doi.org/10.1006/anbo.1996.0175

Spormann, S., Nadais, P., Sousa, F., Pinto, M., et al. (2023). Accumulation of Proline in Plants under Contaminated Soils - Are We on the Same Page? Antioxidants, 12(3), 666. DOI: https://doi.org/10.3390/antiox12030666

Torabi, M., & Halim, M. R. A. (2010). Variation of root and shoot Growth and free proline accumulation in Iranian alfalfa ecotypes under salt stress. Journal of Food Agriculture and Environment , 8 (3), 323-327.

Vergara, C., Araujo, K. E. C., Souza, S. R. D., Schultz, N., et al. (2018). Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesquisa Agropecuária Brasileira, 54. DOI: https://doi.org/10.1590/s1678-3921.pab2019.v54.25140

Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218 (1), 1-14. DOI: https://doi.org/10.1007/s00425-003-1105-5

Xie, M. M., Zou, Y. N., Wu, Q. S., Zhang, Z. Z., & Kuča, K. (2020). Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant, Soil and Environment, 66(6), 287-294. DOI: https://doi.org/10.17221/234/2020-PSE

Yamato, M., Ikeda, S., & Iwase, K. (2008). Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on Growth of sorghum under salt-treated conditions. Mycorrhiza, 18 (5), 241-249. DOI: https://doi.org/10.1007/s00572-008-0177-2

Ye, Q., Wang, H., & Li, H. (2022). Arbuscular Mycorrhizal Fungi Improve Growth, Photosynthetic Activity, and Chlorophyll Fluorescence of Vitis vinifera L. cv. Ecolly under Drought Stress. Agronomy, 12(7), 1563. https://doi.org/10.3390/agronomy12071563 DOI: https://doi.org/10.3390/agronomy12071563

Downloads

Published

2023-04-30

How to Cite

Bhosale, K., & Shinde, B. (2023). Effect of AM fungi during salt stress on biochemical content in Ginger (Zingiber officinale Rosc.). Journal of Experimental Biology and Agricultural Sciences, 11(2), 297–305. https://doi.org/10.18006/2023.11(2).297.305

Issue

Section

RESEARCH ARTICLES

Categories