Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul

Authors

DOI:

https://doi.org/10.18006/2023.11(2).380.393

Keywords:

Euphorbia milii, Antioxidants, Antimicrobial, Molecular docking, Medicinal plants

Abstract

Euphorbia milii Des Moul is a deciduous bush indigenous to Madagascar. The present study aims to investigate the presence of the phytochemical, in-vitro antioxidant and antimicrobial potency, and in-silico computational analysis of ethanolic and aqueous preparations of E. milii leaves and flowers. The ethanolic and aqueous extracts were tested for in-vitro antioxidant activity by DPPH, H2O2, TAC, and FRAP assay. In addition, antimicrobial potentials were assayed by agar well diffusion technique against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Candida albicans for various clinical isolates. The qualitative phytochemical analysis results confirmed the existence of alkaloids, flavonoids, phenolics, and tannins. The quantitative analysis elicits the availability of a magnificent number of alkaloids, flavonoids, phenolics, flavonols, and tannins. Among all the extracts, aqueous extracts of leaves exhibited potent antioxidant activity in DPPH, FRAP, and H2O2 assay with the IC50 value of 30.70, 60.05, and 82.92µg/mL, respectively. In agar well diffusion assay, all extracts displayed zone of inhibition varies from 2-24mm at different concentrations ranging from 10-320 mg/mL, whereas no activity was observed against Candida albicans. Furthermore, docking-based computational analysis has revealed that beta-sitosterol and taraxerol are the plant's active constituents responsible for their antimicrobial and antioxidant activities. Research findings suggest that the E. milii plant has an excellent prospect for further study for its extended antioxidative and antimicrobial potential. It could be a natural source of various ailments and can be utilized to develop new drugs.

References

Abifarin, T. O., Afolayan, A. J., & Otunola, G. A. (2019). Phytochemical and Antioxidant Activities of Cucumis africanus L.f.: A Wild Vegetable of South Africa. Journal of Evidence-Based Integrative Medicine, 24, 1–8. https://doi.org/10.1177/ 2515690X19836391 DOI: https://doi.org/10.1177/2515690X19836391

Agrawal, N., Mujwar, S., Goyal, A., & Gupta, J. K. (2021). Phytoestrogens as Potential Antiandrogenic Agents Against Prostate Cancer: An In Silico Analysis. Letters in Drug Design & Discovery, 19(1), 69–78. https://doi.org/10.2174/ 1570180818666210813121431 DOI: https://doi.org/10.2174/1570180818666210813121431

Ajanaku, C.O., Echeme, J.O., Mordi, R.C., Ajani, O.O., J.A.O., O., Owoeye, T.F., Taiwo, O., & Ataboh, J.U. (2017). Phytochemical Screening and Antimicrobial Studies of Crateva adansonii Leaf Extract. Covenant Journal of Physical and Life Sciences, 4(2), 35–41. http://journals.covenantuniversity.edu.ng/index.php/cjpls/article/ view/408/291

Aleksandrov, M., Maksimova, V., & Koleva Gudeva, L. (2019). Review of the anticancer and cytotoxic activity of some species from genus Euphorbia. Agriculturae Conspectus Scientificus, 84(1), 1–5.

Al-zoreky, N. S., & Al-Taher, A. Y. (2015). Antibacterial activity of spathe from Phoenix dactylifera L. against some food-borne pathogens. Industrial Crops and Products, 65, 241–246. https://doi.org/10.1016/j.indcrop.2014.12.014 DOI: https://doi.org/10.1016/j.indcrop.2014.12.014

Aman S, Mittal D, Shriwastav S, Tuli HS, Chauhan S, Singh P, Sharma S, Saini RV, Kaur N, Saini AK. (2022) Prevalence of multidrug-resistant strains in device associated nosocomial infection and their in vitro killing by nanocomposites. Annals of Medicine and Surgery, 78:103687.https://doi.org/10.1016/ j.amsu.2022.103687 DOI: https://doi.org/10.1016/j.amsu.2022.103687

Aman, S., Kaur, N., Mittal, D., Sharma, D., Shukla, K.K., Singh, B., Sharma, A., Siwal, S.S., Thakur, V.K., Joshi, H., Gupta, R., Saini, R.V., & Saini, A.K. (2023). Novel Biocompatible Green Silver Nanoparticles Efficiently Eliminates Multidrug Resistant Nosocomial Pathogens and Mycobacterium Species. Indian Journal of Microbiology.. https://doi.org/10.1007/s12088-023-01061-0 DOI: https://doi.org/10.1007/s12088-023-01061-0

Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardization of propolis extract and identification of principal constituents. Journal de Pharmacie de Belgique, 49(6), 462–468.

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic content, Flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants, 8(4), 1–12. https://doi.org/10.3390/plants8040096 DOI: https://doi.org/10.3390/plants8040096

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. Xi’an Jiaotong University. https://doi.org/10.1016/j.jpha.2015.11.005 DOI: https://doi.org/10.1016/j.jpha.2015.11.005

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

Bonev, B., Hooper, J., & Parisot, J. (2008). Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy, 61(6), 1295–1301. https://doi.org/10.1093/jac/dkn090 DOI: https://doi.org/10.1093/jac/dkn090

Chaman, S., Khan, F. Z., Khokhar, R., Maab, H., Qamar, S., Zahid, S., Ahmad, M., & Hussain, K. (2019). Cytotoxic and antiviral potentials of Euphorbia milii var. Splendens leaf against peste des petits ruminant virus. Tropical Journal of Pharmaceutical Research, 18(7), 1507–1511. https://doi.org/10.4314/tjpr.v18i7.21 DOI: https://doi.org/10.4314/tjpr.v18i7.21

Chauhan S, Kaur Narinder, Saini A.K., Aman S, Chauhan J, Kumar Harit. (2022) Colistin Resistant Gram-Negative Bacteria Isolated from Various Clinical Samples in North Indian Tertiary Care Center. International Journal of Pharmaceutical Quality Assurance, 13(3), 324-329.https://doi.org/10.25258/ijpqa.13.3.18 DOI: https://doi.org/10.25258/ijpqa.13.3.18

Chohan, T. A., Sarfraz, M., Rehman, K., Muhammad, T., Ghori, M. U., Khan, K. M., Afzal, I., Akash, M. S. H., Alamgeer, Malik, A., & Chohan, T. A. (2020). Phytochemical profiling, antioxidant and antiproliferation potential of Euphorbia milii var.: Experimental analysis and in-silico validation. Saudi Journal of Biological Sciences, 27(11), 3025–3034. https://doi.org/10.1016/ j.sjbs.2020.08.003 DOI: https://doi.org/10.1016/j.sjbs.2020.08.003

Dobriyal, V., Guleri, S., & Singh, M. (2021). Morphological, anatomical and preliminary phytochemical characterization of Buddleja madagascariensis Lam. Current Botany, 12, 53-61. https://doi. org/10.25081/cb.2021.v12.6242. DOI: https://doi.org/10.25081/cb.2021.v12.6242

Fidan, O., Mujwar, S., & Kciuk, M. (2022). Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Molecular Diversity, 27(1), 463-475. https://doi.org/10.1007/s11030-022-10440-6 DOI: https://doi.org/10.1007/s11030-022-10440-6

Gapuz, M., & Besagas, R. (2018). Phytochemical profiles and antioxidant activities of leaf extracts of Euphorbia species. Journal of Biodiversity and Environmental Sciences, 12(4), 59–65. http://www.innspub.net

Ghagane, S. C., Puranik, S. I., Kumbar, V. M., Nerli, R. B., Jalalpure, S. S., Hiremath, M. B., Neelagund, S., & Aladakatti, R. (2017). In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human prostate cancer cell lines. Integrative Medicine Research, 6(1), 79–87. https://doi.org/10.1016/ j.imr.2017.01.004 DOI: https://doi.org/10.1016/j.imr.2017.01.004

Godara, A. (2022). Preliminary Phytochemical Screening and Determination of Total Phenols and Flavonoids in Aerial Parts of Viola Tricolor. ECS Transactions, 107(1), 8219–8227. https://doi.org/10.1149/10701.8219ecst DOI: https://doi.org/10.1149/10701.8219ecst

Gülçin, I. (2005). The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International Journal of Food Sciences and Nutrition, 56(7), 491–499. https://doi.org/10.1080/09637480500450248 DOI: https://doi.org/10.1080/09637480500450248

Habu, J. B., & Ibeh, B. O. (2015). In vitro antioxidant capacity and free radical scavenging evaluation of active metabolite constituents of Newbouldia laevis ethanolic leaf extract. Biological Research, 48(16), 1–10. https://doi.org/10.1186/s40659-015-0007-x DOI: https://doi.org/10.1186/s40659-015-0007-x

Haleshappa, R., Keshamma, E., Girija, C. R., Thanmayi, M., Nagesh, C. G., Fahmeen, G. H. L., Lavanya, M., & Patil, S. J. (2019). Phytochemical Study and Antioxidant Properties of Ethanolic Extracts of Euphorbia milii. Asian Journal of Biological Sciences, 13(1), 77–82. https://doi.org/10.3923/ajbs.2020.77.82 DOI: https://doi.org/10.3923/ajbs.2020.77.82

Harborne, J. B. (2020). Phytochemical Methods. Ethnoveterinary Botanical Medicine (11th ed.). Springer Netherlands. https://doi.org/10.1201/ebk1420045604-8 DOI: https://doi.org/10.1201/EBK1420045604-8

Jahan, I. A., Hossain, M. H., Nimmi, I., Islam, S., Kawsar, M. H., & Islam, M. A. (2012). Evaluation of anti-inflammatory and antioxidant potential of the kernel root of Xylocarpus mekongensis (Lamk.) M. Roem. Oriental Pharmacy and Experimental Medicine, 12(3), 181–188. https://doi.org/10.1007/s13596-012-0068-0 DOI: https://doi.org/10.1007/s13596-012-0068-0

Jayathilakan, K., Sharma, G. K., Radhakrishna, K., & Bawa, A. S. (2007). Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry, 105(3), 908–916. https://doi.org/10.1016/ j.foodchem.2007.04.068 DOI: https://doi.org/10.1016/j.foodchem.2007.04.068

Kabir, M. S. H., Hossain, M. M., Kabir, M. I., Ahmad, S., Chakrabarty, N., Rahman, M. A., & Rahman, M. M. (2016). Antioxidant, antidiarrheal, hypoglycemic and thrombolytic activities of organic and aqueous extracts of Hopea odorata leaves and in silico PASS prediction of its isolated compounds. BMC Complementary and Alternative Medicine, 16(1), 1–13. https://doi.org/10.1186/s12906-016-1461-x DOI: https://doi.org/10.1186/s12906-016-1461-x

Kaur, A., Mujwar, S., & Adlakha, N. (2016). In-silico analysis of riboswitch of Nocardia farcinica for design of its inhibitors and pharmacophores. International Journal of Computational Biology and Drug Design, 9(3), 261–276. https://doi.org/10.1504/ IJCBDD.2016.078278 DOI: https://doi.org/10.1504/IJCBDD.2016.078278

Kokate, C. K., Purohit, A. P., & Gokhale, S. B. (2003). A Text Book of Practical Pharmocognosy (Vol. 22). Nirali Prakashan, Educational publisgers.

Lee, S. E., Hwang, H. J., Ha, J. S., Jeong, H. S., & Kim, J. H. (2003). Screening of medicinal plant extracts for antioxidant activity. Life Sciences, 73(2), 167–179. https://doi.org/10.1016/ S0024-3205(03)00259-5 DOI: https://doi.org/10.1016/S0024-3205(03)00259-5

Lelono, R. A. A., Tachibana, S., & Itoh, K. (2009). In vitro antioxidative activities and polyphenol content of Eugenia polyantha wight grown in Indonesia. Pakistan Journal of Biological Sciences, 12(24), 1564–1570. https://doi.org/10.3923/ pjbs.2009.1564.1570 DOI: https://doi.org/10.3923/pjbs.2009.1564.1570

Migdal, C., & Serres, M. (2011). Reactive oxygen species and oxidative stress. Medecine Sciences, 27(4), 405–412. https://doi.org/10.1051/MEDSCI/2011274017 DOI: https://doi.org/10.1051/medsci/2011274017

Moges, A., Barik, C. R., Purohit, S., & Goud, V. V. (2021). Dietary and bioactive properties of the berries and leaves from the underutilized Hippophae salicifolia D. Don grown in Northeast India. Food Science and Biotechnology, 30(12), 1555–1569. https://doi.org/10.1007/s10068-021-00988-8 DOI: https://doi.org/10.1007/s10068-021-00988-8

Muanda, F., Koné, D., Dicko, A., Soulimani, R., & Younos, C. (2011). Phytochemical composition and antioxidant capacity of three malian medicinal plant parts. Evidence-based complementary and alternative medicine, 2011, 674320. https://doi.org/10.1093/ ecam/nep109 DOI: https://doi.org/10.1093/ecam/nep109

Mujwar, S., & Tripathi, A. (2022). Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. Journal of Molecular Modeling, 28(7), 1–9. https://doi.org/10.1007/s00894-022-05185-w DOI: https://doi.org/10.1007/s00894-022-05185-w

Mujwar, S., Sun, L., & Fidan, O. (2022). In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19. Journal of Food Biochemistry, 46(9). https://doi.org/10.1111/ jfbc.14219 DOI: https://doi.org/10.1111/jfbc.14219

Mutalib, N. S. A. A., Yusuf, N., Asari, A., Aziz, A. N., & Wahab, N. H. A. (2020). Qualitative and quantitative of phytochemical analysis of Malaysian Euphorbia milii (Euphorbiaceae) and its antioxidant activities. Malaysian Applied Biology, 49(4), 233–239. https://doi.org/10.55230/mabjournal.v49i4.1626 DOI: https://doi.org/10.55230/mabjournal.v49i4.1626

Narendra, D., Mounisha, A., Bhavani, B., Sireesha, G., Vijaya Kamari, K., & Sri Ramavenkata Reddy, M. (2015). Antimicrobial studies on flowers of Euphorbia milii. Der Pharmacia Lettre, 7(3), 196–204.

Nayak, D., Pradhan, S., Ashe, S., Rauta, P. R., & Nayak, B. (2015). Biologically synthesized silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. Journal of Colloid and Interface Science, 457, 329–338. https://doi.org/10.1016/j.jcis.2015.07.012 DOI: https://doi.org/10.1016/j.jcis.2015.07.012

Ogah, C., Igbokwe, N., Owolabi, M., & Alabi, F. (2020). Antimicrobial Evaluation of the Leaf Extract of Euphorbia milii.var splendens. African Journal of Pharmaceutical Research & Development, 12(2), 199–207.

Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. https://doi.org/10.5264/ eiyogakuzashi.44.307 DOI: https://doi.org/10.5264/eiyogakuzashi.44.307

Pincus, D. H. (2010). Microbial identification using the bioMérieux VITEK® 2 system. In Encyclopedia of Rapid Microbiological Methods. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://store.pda.org/TableOfContents/ERMM_V2_Ch01.pdf.

Pradhan, P., Soni, N. K., Chaudhary, L., Mujwar, S., & Pardasani, K. R. (2015). In-silico prediction of riboswitches and design of their potent inhibitors for H1N1, H2N2 and H3N2 strains of influenza virus. Biosciences Biotechnology Research Asia, 12(3), 2173–2186. https://doi.org/10.13005/bbra/1889 DOI: https://doi.org/10.13005/bbra/1889

Pradyutha, C.A., Maheswara Rao, U. V, Uma Maheswara Rao, V., District, G., & Pradesh, A. (2015). Phytochemical screening and antimicrobial evaluation of Euphorbia milii leaf extracts. World Journal of Pharmaceutical Research World Journal of Pharmaceutical Research, 5, 4(8), 1626–1633.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019 DOI: https://doi.org/10.1006/abio.1999.4019

Rajesh, V., & Perumal, P. (2014). In vivo assessment of antidiabetic and antioxidant activities of methanol extract of Smilax zeylanica leaves in wistar rats. Oriental Pharmacy and Experimental Medicine, 14(2), 127–144. https://doi.org/10.1007/ s13596-013-0137-z DOI: https://doi.org/10.1007/s13596-013-0137-z

Rao, Y. K., Damu, A. G., Rao, A. J., Venkatesan, S., Kuo, P. C., Rao, C. V., & Wu, T. S. (2003). Flavonoids from Andrographis viscosula. Chemical and Pharmaceutical Bulletin, 51(12), 1374–1376. https://doi.org/10.1248/cpb.51.1374 DOI: https://doi.org/10.1248/cpb.51.1374

Rauf, A., Khan, A., Uddin, N., Akram, M., Arfan, M., Uddin, G., & Qaisar, M. (2014). Preliminary phytochemical screening, antimicrobial and antioxidant activities of Euphorbia milli.Pakistan Journal of Pharmaceutical Sciences, 27(4), 947–951.

Rehni, A. K., Singh, T. G., Jaggi, A. S., & Singh, N. (2008). Pharmacological preconditioning of the brain: A possible interplay between opioid and calcitonin gene related peptide transduction systems. Pharmacological Reports, 60(6), 904–913. http://europepmc.org/abstract/MED/19211983

Roghini, R., & Vijayalakshmi, K. (2018). Phytochemical Screening, Quantitative Analysis of Flavonoids and Minerals in Ethanolic Extract of Citrus Paradisi. International Journal of Pharmaceutical Sciences and Research, 9(11), 48-59. https://doi.org/10.13040/IJPSR.0975-8232.9(11).4859-64 DOI: https://doi.org/10.13040/IJPSR.0975-8232.9(11).4859-64

Ruch, R. J., Cheng, S. jun, & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10(6), 1003–1008. https://doi.org/10.1093/carcin/ 10.6.1003 DOI: https://doi.org/10.1093/carcin/10.6.1003

Sagar, S., & Bisht, M. (2021). A Review on Phytopharmacology of Medicinal Plant: Euphorbia milii Des Moul. International Research Journal Of Pharmacy, 12(6), 67–74. https://doi.org/10.7897/2230-8407.1206146 DOI: https://doi.org/10.7897/2230-8407.1206146

Sagayaraj, R., Dhineshkumar, T., Prakash, A., Aravazhi, S., Chandrasekaran, G., Jayarajan, D., & Sebastian, S. (2020). Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: Antibacterial activity. Chemical Physics Letters, 759. https://doi.org/10.1016/j.cplett.2020.137944 DOI: https://doi.org/10.1016/j.cplett.2020.137944

Saleem, H., Zengin, G., Locatelli, M., Mollica, A., Ahmad, I., Mahomoodally, F. M., Zainal Abidin, S. A., & Ahemad, N. (2019). In vitro biological propensities and chemical profiling of Euphorbia milii Des Moul (Euphorbiaceae): A novel source for bioactive agents. Industrial Crops and Products, 130, 9–15. https://doi.org/10.1016/j.indcrop.2018.12.062 DOI: https://doi.org/10.1016/j.indcrop.2018.12.062

Sheela Devi, A., & Rajkumar, J. (2013). In vitro antibacterial activity and stability of Avicennia marina against urinary tract infection pathogens at different parameters. Pakistan Journal of Biological Sciences, 16(19), 1034–1039. https://doi.org/10.3923/ pjbs.2013.1034.1039 DOI: https://doi.org/10.3923/pjbs.2013.1034.1039

Shinu, P., Sharma, M., Gupta, G. L., Mujwar, S., Kandeel, M., Kumar, M., Nair, A. B., Goyal, M., Singh, P., Attimarad, M., Venugopala, K. N., Nagaraja, S., Telsang, M., Aldhubiab, B. E., & Morsy, M. A. (2022). Computational Design, Synthesis, and Pharmacological Evaluation of Naproxen-Guaiacol Chimera for Gastro-Sparing Anti-Inflammatory Response by Selective COX2 Inhibition. Molecules, 27(20), 6905. https://doi.org/10.3390/ molecules27206905 DOI: https://doi.org/10.3390/molecules27206905

Shriwastav S, Kaur N, Bala R, et al. (2023) In vitro Antibacterial Potency of Leaf Extract of Moringa oleifera against NFGNB Isolated from UTI Patients and their Plasmid Profiling. Journal of Pure and Applied Microbiology, 17(1), 222-230. https://doi.org/10.22207/JPAM.17.1.11 DOI: https://doi.org/10.22207/JPAM.17.1.11

Singh, B., & Sharma, R. A. (2020). Secondary metabolites of medicinal plants: Ethnopharmacological properties, biological

activity and production strategies. In Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies. Wiley Blackwell. https://doi.org/10.1002/9783527825578 DOI: https://doi.org/10.1002/9783527825578

Sofowora, A. (1993). Medicinal Plants and Traditional Medicine in Africa. In Spectrum Books. John Willey and Sons.

Sreenika, G., K, N. S., Bvs, L., Thulja, P., & Sudhakar, M. (2015). Antioxidant and Antitumor Activity of Euphorbia milii Flower Extract Against in-vivo Breast Cancer and Colon Cancer in Mice . World Journal of Pharmacy and Pharmaceutical Sciences, 4(06), 912–934.

Stavrou, I. J., Christou, A., & Kapnissi-Christodoulou, C. P. (2018). Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chemistry, 269, 355–374. Elsevier. https://doi.org/10.1016/ j.foodchem.2018.06.152 DOI: https://doi.org/10.1016/j.foodchem.2018.06.152

Tollefson, L., & Miller, M. A. (2000). Antibiotic use in food animals: controlling the human health impact. Journal of AOAC International, 83(2), 245–254. DOI: https://doi.org/10.1093/jaoac/83.2.245

Trease, E. C., & Evans, W. C. (2009). Pharmacognosy, (16th ed.). Macmillan Publisher.

Usman, A., Abdulrahman, F. I., & Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African Journal of Traditional, Complementary and Alternative Medicines, 6(3), 289–295. https://doi.org/10.4314/ ajtcam.v6i3.57178 DOI: https://doi.org/10.4314/ajtcam.v6i3.57178

Yan, S., Shao, H., Zhou, Z., Wang, Q., Zhao, L., & Yang, X. (2018). Non-extractable polyphenols of green tea and their antioxidant, anti-α-glucosidase capacity, and release during in vitro digestion. Journal of Functional Foods, 42, 129–136. https://doi.org/10.1016/j.jff.2018.01.006 DOI: https://doi.org/10.1016/j.jff.2018.01.006

Yan-Hwa, C., Chang, C. L., & Hsu, H. F. (2000). Flavonoid content of several vegetables and their antioxidant activity. Journal of the Science of Food and Agriculture, 80(5), 561–566. https://doi.org/10.1002/(SICI)1097-0010(200004)80 DOI: https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#

Yao, L., Sun, J., Liang, Y., Feng, T., Wang, H., Sun, M., & Yu, W. (2022). Volatile fingerprints of Torreya grandis hydrosols under different downstream processes using HS-GC–IMS and the enhanced stability and bioactivity of hydrosols by high pressure homogenization. Food Control, 139, 109058. https://doi.org/ 10.1016/j.foodcont.2022.109058 DOI: https://doi.org/10.1016/j.foodcont.2022.109058

Downloads

Published

2023-04-30

How to Cite

Ahmed, M. S., Khan, I. J., Aman, S., Chauhan, S., Kaur, N., Shriwastav, S., Goel, K., Saini, M., Dhankar, S., Singh, T. G., Dev, J., & Mujwar, S. (2023). Phytochemical investigations, in-vitro antioxidant, antimicrobial potential, and in-silico computational docking analysis of Euphorbia milii Des Moul. Journal of Experimental Biology and Agricultural Sciences, 11(2), 380–393. https://doi.org/10.18006/2023.11(2).380.393

Issue

Section

RESEARCH ARTICLES

Categories