An Integrative Approach Towards Recommending Farming Solutions for Sustainable Agriculture
DOI:
https://doi.org/10.18006/2023.11(2).306.315Keywords:
Sustainable agriculture, Precision Farming (PF), Zero Budget Natural Farming (ZBNF), Machine Learning (ML), ClassificationAbstract
Sustainable Agriculture is rapidly emerging as an important discipline to meet societal needs for food and other resources by adopting paradigms of conserving natural resources while maximizing productivity benefits. This paper proposes an integrative methodological approach for critically analyzing Precision Farming (PF) paradigms and Zero Budget Natural Farming (ZBNF), providing sustainable farming solutions and achieving productivity and profitability. This paper analyses the productivity of crops in PF using various machine learning (ML) algorithms based on different soil and climatic factors to identify sustainable agricultural practices for maximizing crop production and generating recommendations for the farmers. When implemented on the collected dataset from various Indian states, the Random Forest (RF) model produced the best results with an AUC-ROC of 95.7%. The Juxtaposition of ZBNF and non-ZBNF is evinced. ZBNF is statistically (p<0.05) observed to be a cost-efficient and more profitable alternative. The impact of ZBNF on soil microbial diversity and micro-nutrients is also discussed.
References
Angeline D. M. D. (2013). Association Rule Generation for Student Performance Analysis using Apriori Algorithm, The SIJ Transactions on Computer Science Engineering & its Applications, 1(1), 12-16. DOI: https://doi.org/10.9756/SIJCSEA/V1I1/01010252
Bakthavatchalam, K., Karthik, B., Thiruvengadam, V., Muthal, S., Jose, D., Kotecha, K., & Varadarajan, V. (2022). IoT Framework for Measurement and Precision Agriculture: Predicting the Crop Using Machine Learning Algorithms. Technologies, 10, 13. DOI: https://doi.org/10.3390/technologies10010013
Beluhova-Uzunova, R. P., & Dunchev, D. M. (2019). Precision Farming - Concepts and perspectives. Problems of Agricultural Economics, 360(3), 142-155. DOI: https://doi.org/10.30858/zer/112132
Bishnoi, R., & Bhati, A. (2017). An overview: Zero budget natural farming. Trends in Biosciences, 10(46), 9314-9316.
Breiman, L.(2001). Random Forests. Machine Learning, 45, 5–32. DOI: https://doi.org/10.1023/A:1010933404324
Calster, B.V., Van Belle, V., Condous, G., Bourne, T., Timmerman, D., & Van Huffel, S. (2008). Multi-class AUC metrics and weighted alternatives. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) , 1390-1396. DOI: https://doi.org/10.1109/IJCNN.2008.4633979
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250. DOI: https://doi.org/10.5194/gmd-7-1247-2014
D’Antoni, J. M., Mishra, A. K., & Joo, H. (2012). Farmers' perception of precision technology: The case of autosteer adoption by cotton farmers. Computers and Electronics in Agriculture, 87, 121-128. DOI: https://doi.org/10.1016/j.compag.2012.05.017
Duddigan, S., Shaw, L. J., Sizmur, T., Gogu, D., et al. (2023). Natural farming improves crop yield in SE India when compared to conventional or organic systems by enhancing soil quality. Agronomy for Sustainable Development, 43(2), 31. DOI: https://doi.org/10.1007/s13593-023-00884-x
Evgeniou, T., & Pontil, M. (2001). Support Vector Machines: Theory and Applications. Machine Learning and Its Applications, 249–257. DOI:10.1007/3-540-44673-7_12 DOI: https://doi.org/10.1007/3-540-44673-7_12
FAO (2016). Zero Budget Natural Farming in India. Retrieved from Web-Link http://www.fao.org/3/a-bl990e.pdf
Fayyaz Z., Ebrahimian M., Nawara D., Ibrahim A. & Kashef R.(2020). Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities. Applied Science, 10(21),7748. DOI: https://doi.org/10.3390/app10217748
Friedman, N., Geiger, D. & Goldszmidt, M. (1997). Bayesian Network Classifiers. Machine Learning, 29, 131–163. DOI: https://doi.org/10.1023/A:1007465528199
Galab S., Prudhvikar Reddy, P., Sree Rama Raju, D., Ravi, C., & Rajani, A. (2018). Impact Assessment of Zero Budget Natural Farming in Andhra Pradesh – Kharif 2018-19. Retrieved from Web-Link: https://www.scribd.com/document/468784250/CESS-FINAL-KHARIF-REPORT-ZBNF-19-8-19-pdf.
Harini, N., Veni, C. P., Sailaja, A., & Lata, A. M. (2021). Zero budget natural farming (ZBNF): A critical analysis on crop wise practices, ZBNF models and cropping systems. The Pharma Innovation Journal, 10(8S), 105-109.
Jayarajan, S.K.P., & Kuriachan, L. (2021). Exposure and health risk assessment of nitrate contamination in groundwater in Coimbatore and Tirupur districts in Tamil Nadu, South India. Environmental Science and Pollution Research International, 28, 10248 - 10261. DOI: https://doi.org/10.1007/s11356-020-11552-y
Kohler, U., & Kreuter, F. (2005). Data analysis using Stata. Stata press.
Kostraba, J. N., Gay, E. C., Rewers, M., & Hamman, R. F. (1992). Nitrate levels in community drinking waters and risk of IDDM. An ecological analysis. Diabetes care, 15(11), 1505–1508. DOI: https://doi.org/10.2337/diacare.15.11.1505
Kumar, R., Kumar, S., Yashavanth, B.S., Meena, P.C., et al. (2020) Adoption of Natural Farming and its Effect on Crop Yield and Farmers' Livelihood in India. ICAR-National Academy of Agricultural Research Management, Hyderabad, India. Retrived from web link : http://www.niti.gov.in/sites/default/files/2021-03/NaturalFarmingProjectReport-ICAR-NAARM.pdf
McHugh, M. (2012). Interrater reliability: The kappa statistic. Biochemia medica : časopis Hrvatskoga društva medicinskih biokemičara, 22(3), 276–282. DOI: https://doi.org/10.11613/BM.2012.031
Mokarrama, M.J., & Arefin, M.S. (2017). RSF: A recommendation system for farmers. 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), 843-850. DOI: https://doi.org/10.1109/R10-HTC.2017.8289086
Morgan C. J. (2017). Use of proper statistical techniques for research studies with small samples. American journal of physiology, Lung cellular and molecular physiology, 313(5), 873–877. DOI: https://doi.org/10.1152/ajplung.00238.2017
NABARD. (2018). Agriculture Credit to Farmers. Retrieved from Web-Link https://nabard.org/news-article.aspx?id= 25&cid= 552 &NID=160
National Research Council. (1997). Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management. Washington, DC: The National Academies Press.
Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61-69. DOI: https://doi.org/10.1016/j.protcy.2013.11.010
Rahman, A., Mondal, N.C. & Tiwari, K.K.(2021). Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India. Scientific Reports, 11(1), 9279 DOI: https://doi.org/10.1038/s41598-021-88600-1
Savcı, S. (2012). An Agricultural Pollutant: Chemical Fertilizer, International Journal of Environmental Science and Development, 3(1), 77-80. DOI: https://doi.org/10.7763/IJESD.2012.V3.191
Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. DOI: https://doi.org/10.3390/s19173796
West R. M. (2021). Best practice in statistics: Use the Welch t-test when testing the difference between two groups. Annals of clinical biochemistry, 58(4), 267–269. DOI: https://doi.org/10.1177/0004563221992088
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.