Haberlea rhodopensis alcohol extract normalizes stress-responsive transcription of the human TP53 gene

Authors

  • Neli Dimitrova Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria https://orcid.org/0000-0002-1748-8757
  • Dessislava Staneva Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria https://orcid.org/0000-0003-3518-6856
  • Borislav Popov Department of Molecular Biology, Immunology and Medical Genetics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria https://orcid.org/0000-0003-3911-9335
  • Albena Alexandrova Laboratory of Free Radical Processes, Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str, 1113 Sofia, Bulgaria https://orcid.org/0000-0002-7007-3665
  • Milena Georgieva Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria https://orcid.org/0000-0002-2371-7544
  • George Miloshev Laboratory of Molecular Genetics, Epigenetics and Longevity, Institute of Molecular Biology "RoumenTsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria https://orcid.org/0000-0003-2979-8899

DOI:

https://doi.org/10.18006/2023.11(2).405.415

Keywords:

Haberlea rhodopensis, HRE ethanol extracts, TP53 gene expression, Catalase activity, Gamma irradiation, Hydrogen peroxide

Abstract

The Orpheus flower Haberlea rhodopensis (Friv.) of the family Gesneriaceae can go into anabiosis for long periods in an almost entirely desiccated state. It is an endemic relict from the Balkan Peninsula. Alcohol extracts from H. rhodopensis contain many biologically active substances with potent antioxidant, antigenotoxic, radioprotective, revitalizing and antiaging capabilities. However, regulating the gene networks responsible for these activities is vastly unknown. This study explores the cellular mechanisms underlying the protective effect of H. rhodopensis extracts (HRE). HeLa cells (human cervix epithelial carcinoma, HeLa ATCC® CCL-2™) were used as a model. We examined the changes in catalase activity and TP53 mRNA level shortly after oxidative (H2O2) and ionizing radiation (IR) induced stress with and without pre-incubation with HRE extracts. The dynamics in the activity of catalase, a main cellular antioxidant enzyme, and the expression of the stress-responsive gene TP53 were investigated by UV spectrophotometric assay and RT-qPCR, respectively. Under the applied stress conditions, H2O2 treatment and gamma radiation, catalase activity increased. This was a sign of induced ROS generation. In the first hours after treatment, the two stressors led to opposite changes in the levels of TP53 gene expression, which were alleviated by pre-incubation with HRE in a concentration-dependent manner. The broad biological activities of the studied extract, taking into account our results, show that ability of HRE to reduce the effect of stress is achieved through complex molecular mechanisms aimed at preserving cellular homeostasis. Mechanisms include the normalization of antioxidant enzyme activity such as catalase and the activity of TP53, one of the genes responsive to stress, by up or down-regulation.

References

Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/s0076-6879(84)05016-3 DOI: https://doi.org/10.1016/S0076-6879(84)05016-3

Bai, J., & Cederbaum, A. I. (2003). Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. Journal of Biological Chemistry, 278(7), 4660-4667. https://doi.org/10.1074/jbc.M206273200 DOI: https://doi.org/10.1074/jbc.M206273200

Benhusein, G. M., Mutch, E., Aburawi, S., & Williams, F. M. (2010). Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay. Libyan Journal of Medicine, 5. https://doi.org/10.3402/ljm.v5i0.4637 DOI: https://doi.org/10.3402/ljm.v5i0.4637

Berkov, S. H., Nikolova, M. T., Hristozova, N. I., Momekov, G. Z., Ionkova, I. I., & Djilianov, D. L. (2011). GC-MS profiling of bioactive extracts from Haberlea rhodopensis: an endemic resurrection plant. Journal of the Serbian Chemical Society, 76(2), 211-220. https://doi.org/10.2298/Jsc100324024b DOI: https://doi.org/10.2298/JSC100324024B

Campisi, J. (2013). Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, 75, 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653 DOI: https://doi.org/10.1146/annurev-physiol-030212-183653

Cao, L. L., Kawai, H., Sasatani, M., Iizuka, D., Masuda, Y., et al. (2014). A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic gamma-Irradiation. Plos One, 9(8). https://doi.org/ARTN e10427910.1371/journal.pone.0104279 DOI: https://doi.org/10.1371/journal.pone.0104279

Carson, S., Miller, H. B., Witherow, D. S., & Srougi, M. C. (2019). Molecular Biology Techniques: A Classroom Laboratory Manual. In S. Carson, H. B. Miller, D. S. Witherow, & M. C. Srougi (Eds.), Molecular Biology Techniques (Fourth Edition) (Fourth Edition ed.). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-815774-9.00035-6 DOI: https://doi.org/10.1016/B978-0-12-815774-9.00035-6

Checa, J., & Aran, J. M. (2020). Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. Journal of Inflammation Research, 13, 1057-1073. https://doi.org/10.2147/ Jir.S275595 DOI: https://doi.org/10.2147/JIR.S275595

Dell'Acqua, G., & Schweikert, K. (2012). Skin benefits of a myconoside-rich extract from resurrection plant Haberlea rhodopensis. International Journal of Cosmetic Science, 34(2), 132-139. https://doi.org/10.1111/j.1468-2494.2011.00692.x DOI: https://doi.org/10.1111/j.1468-2494.2011.00692.x

Ebrahimi, S. N., Gafner, F., Dell'Acqua, G., Schweikert, K., & Hamburger, M. (2011). Flavone 8-C-Glycosides from Haberlea rhodopensis FRIV. (Gesneriaceae). Helvetica Chimica Acta, 94(1), 38-45. https://doi.org/DOI 10.1002/hlca.201000378 DOI: https://doi.org/10.1002/hlca.201000378

Gechev, T. S., Benina, M., Obata, T., Tohge, T., Sujeeth, N., et al. (2013). Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cellular and Molecular Life Sciences, 70(4), 689-709. https://doi.org/10.1007/ s00018-012-1155-6 DOI: https://doi.org/10.1007/s00018-012-1155-6

Georgieva, M., Moyankova, D., Djilianov, D., Uzunova, K., & Miloshev, G. (2015). Methanol extracts from the resurrection plant Haberlea rhodopensis ameliorate cellular vitality in chronologically ageing Saccharomyces cerevisiae cells. Biogerontology, 16(4), 461-472. https://doi.org/10.1007/s10522-015-9566-z DOI: https://doi.org/10.1007/s10522-015-9566-z

Georgieva, S., Popov, B., & Bonev, G. (2013). Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on gamma-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood. Indian Journal of Experimental Biology, 51(1), 29-36.

Giorgio, M., Trinei, M., Migliaccio, E., & Pelicci, P. G. (2007). Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature Reviews Molecular Cell Biology, 8(9), 722a-728. DOI: https://doi.org/10.1038/nrm2240

Gomes, T., Song, Y., Brede, D. A., Xie, L., Gutzkow, K. B., Salbu, B., & Tollefsen, K. E. (2018). Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. Science of the Total Environment, 628-629, 206-216. https://doi.org/10.1016/ j.scitotenv.2018.02.039 DOI: https://doi.org/10.1016/j.scitotenv.2018.02.039

Hayrabedyan, S., Todorova, K., Zasheva, D., Moyankova, D., Georgieva, D., Todorova, J., & Djilianov, D. (2013). Haberlea rhodopensis Has Potential as a New Drug Source Based on Its Broad Biological Modalities. Biotechnology & Biotechnological Equipment, 27(1), 3553-3560. https://doi.org/10.5504/ Bbeq.2012.0112a

Hickman, M. J., & Samson, L. D. (1999). Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10764-10769. https://doi.org/DOI 10.1073/pnas.96.19.10764 DOI: https://doi.org/10.1073/pnas.96.19.10764

Hoppeseyler, F., & Butz, K. (1993). Repression of Endogenous P53 Transactivation Function in Hela Cervical-Carcinoma Cells by Human Papillomavirus Type-16 E6, Human Mdm-2, and Mutant P53. Journal of Virology, 67(6), 3111-3117. https://doi.org/Doi 10.1128/Jvi.67.6.3111-3117.1993 DOI: https://doi.org/10.1128/jvi.67.6.3111-3117.1993

Hussain, S. P., Amstad, P., He, P. J., Robles, A., Lupold, S., et al. (2004). p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Research, 64(7), 2350-2356. https://doi.org/Doi 10.1158/0008-5472.Can-2287-2 DOI: https://doi.org/10.1158/0008-5472.CAN-2287-2

Johnson, T. M., Yu, Z. X., Ferrans, V. J., Lowenstein, R. A., & Finkel, T. (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11848-11852. https://doi.org/DOI 10.1073/pnas.93.21.11848 DOI: https://doi.org/10.1073/pnas.93.21.11848

Kang, M. Y., Kim, H. B., Piao, C., Lee, K. H., Hyun, J. W., Chang, I. Y., & You, H. J. (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death and Differentiation, 20(1), 117-129. https://doi.org/10.1038/cdd.2012.102 DOI: https://doi.org/10.1038/cdd.2012.102

Kastenhuber, E. R., & Lowe, S. W. (2017). Putting p53 in Context. Cell, 170(6), 1062-1078. https://doi.org/10.1016/j.cell.2017.08.028 DOI: https://doi.org/10.1016/j.cell.2017.08.028

Kondeva-Burdina, M., Zheleva-Dimitrova, D., Nedialkov, P., Girreser, U., & Mitcheva, M. (2013). Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae). Pharmacognosy Magazine, 9(36), 294-301. https://doi.org/10.4103/0973-1296.117822 DOI: https://doi.org/10.4103/0973-1296.117822

Lee, C. L., Blum, J. M., & Kirsch, D. G. (2013). Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Translational Cancer Research, 2(5), 412-421. https://doi.org/10.3978/j.issn.2218-676X.2013.09.01

Leroy, B., Girard, L., Hollestelle, A., Minna, J. D., Gazdar, A. F., & Soussi, T. (2014). Analysis of TP53 Mutation Status in Human Cancer Cell Lines: A Reassessment. Human Mutation, 35(6), 756-765. https://doi.org/10.1002/humu.22556 DOI: https://doi.org/10.1002/humu.22556

Liu, B., Chen, Y. M., & Clair, D. K. S. (2008). ROS and p53: A versatile partnership. Free Radical Biology and Medicine, 44(8), 1529-1535. https://doi.org/10.1016/j.freeradbiomed.2008.01.011 DOI: https://doi.org/10.1016/j.freeradbiomed.2008.01.011

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/ 10.1006/meth.2001.1262 DOI: https://doi.org/10.1006/meth.2001.1262

MacCallum, D. E., Hupp, T. R., Midgley, C. A., Stuart, D., Campbell, S. J., et al. (1996). The p53 response to ionizing radiation in adult and developing murine tissues. Oncogene, 13(12), 2575-2587.

Mihaylova, D., Bahchevanska, S., & Toneva, V. (2011). Microwave-assisted extraction of flavonoid antioxidants from leaves of Haberlea rhodopensis. Journal of International Scientific Publications: Materials, Methods & Technologies, 5(1), 104-114.

Muller, J., Sprenger, N., Bortlik, K., Boller, T., & Wiemken, A. (1997). Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiologia Plantarum, 100(1), 153-158. https://doi.org/DOI 10.1034/j.1399-3054.1997.1000117.x DOI: https://doi.org/10.1034/j.1399-3054.1997.1000117.x

O'Connor, J. C., Wallace, D. M., O'Brien, C. J., & Cotter, T. G. (2008). A novel antioxidant function for the tumor-suppressor gene p53 in the retinal ganglion cell. Investigative Ophthalmology & Visual Science, 49(10), 4237-4244. https://doi.org/10.1167/ iovs.08-1963 DOI: https://doi.org/10.1167/iovs.08-1963

Oneill, P., & Fielden, E. M. (1993). Primary Free-Radical Processes in DNA. Advances in Radiation Biology, 17, 53-120. DOI: https://doi.org/10.1016/B978-0-12-035417-7.50005-2

Park, K., & Kwak, I. S. (2022). Apoptotic p53 Gene Expression in the Regulation of Persistent Organic Pollutant (POP)-Induced Oxidative Stress in the Intertidal Crab Macrophthalmus japonicus. Antioxidants, 11(4). https://doi.org/Artn 77110.3390/ Antiox11040771 DOI: https://doi.org/10.3390/antiox11040771

Pflaumf, J., Schlosser, S., & Muller, M. (2014). p53 family and cellular stress responses cancer. Frontiers in Oncology, 4. https://doi.org/Artn 28510.3389/Fonc.2014.00285 DOI: https://doi.org/10.3389/fonc.2014.00285

Popov, B., Dobreva, Z. G., Georgieva, S., & Stanilova, S. A. (2010a). Enhancement of anti-KLH IgG antibody production in rabbits after treatment with Haberlea rhodopensis extracts. Trakia Journal of Sciences, 8(2), 92-97.

Popov, B., Georgieva, S., Gadjeva, V., & Petrov, V. (2011). Radioprotective, anticlastogenic and antioxidant effects of total extract of Haberlea rhodopensis on rabbit blood samples exposed to gamma radiation in vitro. Revue De Medecine Veterinaire, 162(1), 34-39.

Popov, B., Georgieva, S., Oblakova, M., & Bonev, G. (2013). Effects of Haberlea rhodopensis Extract on Antioxidation and Lipid Peroxidation in Rabbits after Exposure to (Co)-C-60-Gamma-Rays. Archives of Biological Sciences, 65(1), 91-97. https://doi.org/10.2298/Abs1301091p DOI: https://doi.org/10.2298/ABS1301091P

Popov, B., Radev, R., & Georgieva, S. (2010b). In vitro incidence of chromosome aberrations in gamma-irradiated rabbit lymphocytes, treated with Haberlea rhodopensis extract and vitamin C. Bulgarian Journal of Veterinary Medicine, 13(3), 148-153.

Popowich, D. A., Vavra, A. K., Walsh, C. P., Bhikhapurwala, H. A., Rossi, N. B., et al. (2010). Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 298(6), H2192-H2200. https://doi.org/10.1152/ ajpheart.00535.2009 DOI: https://doi.org/10.1152/ajpheart.00535.2009

Radev, R., Lazarova, G., Nedialkov, P., Sokolova, K., Rukanova, D., & Tsokeva, Z. (2009). Study on antibacterial activity of Haberlea rhodopensis. Trakia Journal of Sciences, 7(1), 34-36.

Reisz, J. A., Bansal, N., Qian, J., Zhao, W. L., & Furdui, C. M. (2014). Effects of Ionizing Radiation on Biological Molecules-Mechanisms of Damage and Emerging Methods of Detection. Antioxidants & Redox Signaling, 21(2), 260-292. https://doi.org/10.1089/ars.2013.5489 DOI: https://doi.org/10.1089/ars.2013.5489

Santoro, R., & Blandino, G. (2010). p53: The pivot between cell cycle arrest and senescence. Cell Cycle, 9(21), 4262-4263. https://doi.org/10.4161/cc.9.21.13853 DOI: https://doi.org/10.4161/cc.9.21.13853

Shi, T., van Soest, D. M. K., Polderman, P. E., Burgering, B. M. T., & Dansen, T. B. (2021). DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radical Biology and Medicine, 172, 298-311. https://doi.org/10.1016/j.freeradbiomed.2021.06.013 DOI: https://doi.org/10.1016/j.freeradbiomed.2021.06.013

Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., & Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes & Development, 11(24), 3471-3481. https://doi.org/DOI 10.1101/gad.11.24.3471 DOI: https://doi.org/10.1101/gad.11.24.3471

Stefanov, K., Markovska, Y., Kimenov, G., & Popov, S. (1992). Lipid and Sterol Changes in Leaves of Haberlea-Rhodopensis and Ramonda-Serbica at Transition from Biosis into Anabiosis and Vice-Versa Caused by Water-Stress. Phytochemistry, 31(7), 2309-2314. https://doi.org/Doi 10.1016/0031-9422(92)83270-9 DOI: https://doi.org/10.1016/0031-9422(92)83270-9

Stevenson MA, C. S. (2016). Molecular and cellular biology In T. J. Gunderson LL (Ed.), Clinical Radiation Oncology (pp. 14-50). Elsevier Inc. https://doi.org/https://doi.org/10.1016/C2013-0-00648-2 DOI: https://doi.org/10.1016/B978-0-323-24098-7.00002-2

Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry & Cell Biology, 39(1), 44-84. https://doi.org/10.1016/j.biocel.2006.07.001 DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Vendemiale, G., Grattagliano, I., & Altomare, E. (1999). An update on the role of free radicals and antioxidant defense in human disease. International Journal of Clinical & Laboratory Research, 29(2), 49-55. https://doi.org/DOI 10.1007/s005990050063 DOI: https://doi.org/10.1007/s005990050063

Zhang, X. X., Wang, L., Lu, H., Zong, Z. Q., et al. (2020). Preservation of hydrogen peroxide-induced oxidative damage in HepG-2 cells by rice protein hydrolysates pretreated with electron beams. Scientific Reports, 10(1). https://doi.org/Artn 841510.1038/S41598-020-64814-7 DOI: https://doi.org/10.1038/s41598-020-64814-7

Downloads

Published

2023-04-30

How to Cite

Dimitrova, N., Staneva, D., Popov, B., Alexandrova, A., Georgieva, M., & Miloshev, G. (2023). Haberlea rhodopensis alcohol extract normalizes stress-responsive transcription of the human TP53 gene. Journal of Experimental Biology and Agricultural Sciences, 11(2), 405–415. https://doi.org/10.18006/2023.11(2).405.415

Issue

Section

RESEARCH ARTICLES

Categories