Synergistic anticancer effect of combination treatment of vitamin D and pitavastatin on the HCC1937 breast cancer cells
DOI:
https://doi.org/10.18006/2022.10(6).1401.1409Keywords:
Vitamin D, Pitavastatin, Breast cancer, Apoptosis, Cell cycle arrestAbstract
Vitamin D (Vit D) has anticancer properties including activating cell senescence inhibiting cancer cell proliferation, inducing apoptotic cell death, and decreasing cancer cell migration. On the other hand, statins showed favorable anticancer activities including anti-survival, anti-proliferation, and anti-migration effects. The current study aimed to investigate the synergistic anticancer effect of Vit D and statins against HCC1937 triple-negative breast cancer cells. The antiproliferative effect was tested by MTT assay after 48 hours of the treatments. Trypan blue test and clonogenic assay were used to test the anti-survival activities of the treatments. The ability of the treatments to inhibit the migration ability was tested by scratch assay. Levels of the cell cycle and apoptotic markers were determined by western blotting. Results of the study revealed that all the tested compounds including Vit D, atorvastatin (Ator), simvastatin (Simv), and pitavastatin (Pita) inhibited HCC1937 breast cancer cell growth with different IC50 values ranging from 4.49-12.95 µM. Combined application of Pita and Vit D showed potent synergistic antiproliferative activities against HCC1937 breast cancer cells. The combined therapy of (1µM Vit D and 2 µM Pita) inhibited HCC1937 cell proliferation by cell cycle arrest and apoptosis as evidenced by increasing p21, p53, and cleaved PARP. Finally, the combined treatment decreased the p-STAT3 level in HCC1937 breast cancer cells. The results of the study can be concluded that the combined treatment of Pita and Vit D has a synergistic anticancer effect against HCC1937 breast cancer cells.
References
Aliwaini, S. (2020). Pitavastatin and Cancer: Current and Future Prospects. Frontiers in Clinical Drug Research - Anti-Cancer Agents, 6, 1-22. DOI: https://doi.org/10.2174/9781681087757121070006
Aliwaini, S., Peres, J., Kröger, W. L. W. L. W. L., Blanckenberg, A., et al. (2015). The palladacycle, AJ-5, exhibits anti-tumour and anti-cancer stem cell activity in breast cancer cells. Cancer Letters, 357, 206–218. DOI: https://doi.org/10.1016/j.canlet.2014.11.027
Aliwaini, S., Lubbad, A., Shourfa, A., Hamada, H., et al. (2019). Overexpression of TBX3 transcription factor as a potential diagnostic marker for breast cancer. Molecular and Clinical Oncology, 10, 105–112. DOI: https://doi.org/10.3892/mco.2018.1761
Aliwaini, S., Abu Thaher, B., Al-Masri, I., Shurrab, N., (2021). Design, Synthesis and Biological Evaluation of Novel Pyrazolo[1,2,4]triazolopyrimidine Derivatives as Potential Anticancer Agents. Molecules (Basel, Switzerland), 26(13), 4065. https://doi.org/10.3390/molecules26134065 DOI: https://doi.org/10.3390/molecules26134065
Al-Qatati, A., & Aliwaini, S. (2017). Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncology letters, 14(6), 7993–7999. https://doi.org/10.3892/ol.2017.7189 DOI: https://doi.org/10.3892/ol.2017.7189
AlWaheidi S. (2019). Breast cancer in Gaza-a public health priority in search of reliable data. Ecancermedicalscience, 13, 964. https://doi.org/10.3332/ecancer.2019.964 DOI: https://doi.org/10.3332/ecancer.2019.964
Bao, A., Li, Y., Tong, Y., Zheng, H., Wu, W., & Wei, C. (2014). 1,25-Dihydroxyvitamin D₃ and cisplatin synergistically induce apoptosis and cell cycle arrest in gastric cancer cells. International journal of molecular medicine, 33(5), 1177–1184. https://doi.org/10.3892/ijmm.2014.1664 DOI: https://doi.org/10.3892/ijmm.2014.1664
Charoenngam, N., & Holick, M. F. (2020). Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients, 12(7), 2097. https://doi.org/10.3390/nu12072097 DOI: https://doi.org/10.3390/nu12072097
Göbel, A., Breining, D., Rauner, M., Hofbauer, L. C. and Rachner, T. D. (2019). Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death & Disease,10(2):91. DOI: 10.1038/s41419-019-1322-x DOI: https://doi.org/10.1038/s41419-019-1322-x
Guerra, B., Recio, C., Aranda-Tavío, H., Guerra-Rodríguez, M., García-Castellano, J. M., & Fernández-Pérez, L. (2021). The Mevalonate Pathway, a Metabolic Target in Cancer Therapy. Frontiers in oncology, 11, 626971. https://doi.org/10.3389/ fonc.2021.626971 DOI: https://doi.org/10.3389/fonc.2021.626971
Lee, N., Tilija Pun, N., Jang, W. J., Bae, J. W., & Jeong, C. H. (2020). Pitavastatin induces apoptosis in oral squamous cell carcinoma through activation of FOXO3a. Journal of cellular and molecular medicine, 24(12), 7055–7066. https://doi.org/10.1111/ jcmm.15389 DOI: https://doi.org/10.1111/jcmm.15389
Li, L., Shang, F., Zhu, Y., Sun, Y., & Sudi, R. S. (2019). Modulation of VDR and Cell Cycle-Related Proteins by Vitamin D in Normal Pancreatic Cells and Poorly Differentiated Metastatic Pancreatic Cancer Cells. Nutrition and cancer, 71(5), 818–824. https://doi.org/10.1080/01635581.2018.1521445 DOI: https://doi.org/10.1080/01635581.2018.1521445
Liu, N., Li, X., Fu, Y., Li, Y., Lu, W., Pan, Y., Yang, J., & Kong, J. (2020). Inhibition of lung cancer by vitamin D depends on downregulation of histidine-rich calcium-binding protein. Journal of advanced research, 29, 13–22. https://doi.org/10.1016/ j.jare.2020.08.013 DOI: https://doi.org/10.1016/j.jare.2020.08.013
Morris H. A. (2005). Vitamin D: a hormone for all seasons--how much is enough?. The Clinical biochemist. Reviews, 26(1), 21–32.
O’Brien, K. M., Keil, A. P., Harmon, Q. E., Jackson, C. L., et al. (2022). Vitamin D supplement use and risk of breast cancer by race-ethnicity. Epidemiology 33, 37–47. DOI: https://doi.org/10.1097/EDE.0000000000001413
O’Grady, S., Crown, J., & Duffy, M. J. (2020). Abstract 1775: Anti-tumor effects of statins in triple-negative breast cancer: Apoptosis, chemosensitization and degradation of mutant-p53. Cancer Research, 80 (16S), 1775–1775. DOI: https://doi.org/10.1158/1538-7445.AM2020-1775
Porras, L., Ismail, H., & Mader, S. (2021). Positive regulation of estrogen receptor alpha in breast tumorigenesis. Cells 10, 2–25. DOI: https://doi.org/10.3390/cells10112966
Razali, N. R., Huri, H. Z., Ibrahim, L., Vethakkan, S. R., & Abdullah, B. M. (2018). Glycemic effects of simvastatin: Where do we stand? Brazilian Journal of Pharmaceutical Sciences, 54, 17192. DOI: https://doi.org/10.1590/s2175-97902018000117192
Rezano, A., Ridhayanti, F., Rangkuti, A. R., Gunawan, T., Winarno, G. N. A., & Wijaya, I. (2021). Cytotoxicity of Simvastatin in Human Breast Cancer MCF-7 and MDA-MB-231 Cell Lines. Asian Pacific journal of cancer prevention : APJCP, 22(S1), 33–42. https://doi.org/10.31557/APJCP.2021.22.S1.33 DOI: https://doi.org/10.31557/APJCP.2021.22.S1.33
Seachrist, D. D., Anstine, L. J., & Keri, R. A. (2021). FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers, 13(20), 5205. https://doi.org/10.3390/cancers13205205 DOI: https://doi.org/10.3390/cancers13205205
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660
Tilija Pun, N., Lee, N., Song, S. H., & Jeong, C. H. (2022). Pitavastatin Induces Cancer Cell Apoptosis by Blocking Autophagy Flux. Frontiers in pharmacology, 13, 854506. https://doi.org/10.3389/fphar.2022.854506 DOI: https://doi.org/10.3389/fphar.2022.854506
Wang, G., Cao, R., Wang, Y., Qian, G., Dan, H. C., Jiang, W., Ju, L., Wu, M., Xiao, Y., & Wang, X. (2016). Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Scientific reports, 6, 35783. https://doi.org/10.1038/srep35783 DOI: https://doi.org/10.1038/srep35783
Wang, S. T., Huang, S. W., Liu, K. T., Lee, T. Y., Shieh, J. J., & Wu, C. Y. (2020). Atorvastatin-induced senescence of hepatocellular carcinoma is mediated by downregulation of hTERT through the suppression of the IL-6/STAT3 pathway. Cell death discovery, 6, 17. https://doi.org/10.1038/s41420-020-0252-9 DOI: https://doi.org/10.1038/s41420-020-0252-9
Young, A. R., Morgan, K. A., Harrison, G. I., Lawrence, K. P., Petersen, B., Wulf, H. C., & Philipsen, P. A. (2021). A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. Proceedings of the National Academy of Sciences of the United States of America, 118(40), e2015867118. https://doi.org/10.1073/pnas.2015867118 DOI: https://doi.org/10.1073/pnas.2015867118
Zhang, Y. L., Liu, L., Su, Y. W., & Xian, C. J. (2021). miR-542-3p Attenuates Bone Loss and Marrow Adiposity Following Methotrexate Treatment by Targeting sFRP-1 and Smurf2. International journal of molecular sciences, 22(20), 10988. https://doi.org/10.3390/ijms222010988 DOI: https://doi.org/10.3390/ijms222010988
Zheng, W., Cao, L., Ouyang, L., Zhang, Q., Duan, B., Zhou, W., Chen, S., Peng, W., Xie, Y., Fan, Q., & Gong, D. (2019). Anticancer activity of 1,25-(OH)2D3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. OncoTargets and therapy, 12, 721–732. https://doi.org/10.2147/OTT.S190432 DOI: https://doi.org/10.2147/OTT.S190432
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.