Isolation and production of polyhydroxybutyrate (PHB) from Bacillus pumilus NMG5 strain for bioplastic production and treatment of wastewater from paper factories

Authors

DOI:

https://doi.org/10.18006/2023.11(2).351.358

Keywords:

Bacillus pumilus, Polyhydroxybutyrate (PHB), Activated sludge, Wastewater, 16S rRNA

Abstract

Polyhydroxybutyrate (PHB) has the potential to replace traditional plastics and limit environmental pollution caused by plastic waste. This study combined wastewater treatment with PHB production to reduce costs. Bacteria capable of synthesizing PHB were isolated from paper mill wastewater and identified using Matrix Assisted Laser Desorption/Ionization–Time of Flight (MALDI-TOF) mass spectrometry and 16S rRNA gene analysis. Bacillus pumilus NMG5 strain was found to have a good yield in modified Nutrient Broth culture, reaching 42.28% of dry biomass. The PHB product was analyzed using FTIR spectroscopy and 1H NMR spectroscopy. The bacterial strain was also tested for its ability to treat paper mill wastewater, and it showed impressive results in terms of biochemical oxygen demand (COD), total nitrogen, and total phosphorus, with efficiencies of 95.93%, 79.36%, and 83.55%, respectively. The study found that wastewater treatment combined with PHB production was a promising solution to reduce costs and limit environmental pollution. The bacterial strain B. pumilus NMG5 had a high yield of PHB, and the PHB product was of high quality, as confirmed by FTIR and 1H NMR spectroscopy. Furthermore, the bacterial strain showed impressive results in treating paper mill wastewater with high COD, total nitrogen, and total phosphorus efficiencies. These results suggest that this harmless bacterium could be used in paper mill wastewater treatment systems to produce PHB, providing a sustainable and environmentally friendly solution.

References

Ali, M., & Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research, 5(2), 175-196. https://doi.org/10.1016/S1093-0191(00)00055-1. DOI: https://doi.org/10.1016/S1093-0191(00)00055-1

Bosco, F., & Chiampo, F. (2010). Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: production of bioplastics using dairy residues. Journal of Bioscience and Bioengineering, 109(4), 418-421. https://doi.org/10.1016/j.jbiosc.2009.10.012. DOI: https://doi.org/10.1016/j.jbiosc.2009.10.012

Das, R., Pal, A., & Paul, A. K. (2022). Optimization of process parameters for production of poly (3-hydroxybutyrate) by Bacillus pumilus AHSD 04, a seed borne Endophyte of oleaginous plant Arachis hypogaea L. Biointerface Research in Applied Chemistry, 12(4), 5280-5295. https://doi.org/10.33263/BRIAC124.52805295. DOI: https://doi.org/10.33263/BRIAC124.52805295

Getachew, A., & Woldesenbet, F. (2016). Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material. BMC Research Notes, 9(1), 1-9. https://doi.org/10.1186/s13104-016-2321-y. DOI: https://doi.org/10.1186/s13104-016-2321-y

Hungund, B., Shyama, V. S., Patwardhan, P., & Saleh, A. M. (2013). Production of polyhydroxyalkanoate from Paenibacillus durus BV-1 isolated from oil mill soil. Journal of Microbial and Biochemical Technology, 5, 013-017. http://dx.doi.org/10.4172/ 1948-5948.1000092. DOI: https://doi.org/10.4172/1948-5948.1000092

Johnson, K., Kleerebezem, R., & van Loosdrecht, M. C. (2010). Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Research, 44(7), 2141-2152. https://doi.org/10.1016/j.watres.2009.12.031. DOI: https://doi.org/10.1016/j.watres.2009.12.031

Kung, S. S., Chuang, Y. C., Chen, C. H., & Chien, C. C. (2007). Isolation of polyhydroxyalkanoates producing bacteria using a combination of phenotypic and genotypic approach. Letters in Applied Microbiology, 44(4), 364-371. https://doi.org/10.1111/ j.1472-765X.2006.02090.x. DOI: https://doi.org/10.1111/j.1472-765X.2006.02090.x

Law, J. H., & Slepecky, R. A. (1961). Assay of poly-β-hydroxybutyric acid. Journal of Bacteriology, 82 (1), 33-36. https://doi.org/10.1128/jb.82.1.33-36.1961. DOI: https://doi.org/10.1128/jb.82.1.33-36.1961

Li, R., Gu, P., Fan, X., Shen, J., Wu, Y., Huang, L., & Li, Q. (2018). Isolation and characterization of PHA-producing bacteria from propylene oxide saponification wastewater residual sludge. Applied Biochemistry and Biotechnology, 186(1), 233-244. https://doi.org/10.1007/s12010-018-2731-5. DOI: https://doi.org/10.1007/s12010-018-2731-5

Maliehe, T. S., Simonis, J., Basson, A. K., Reve, M., Ngema, S., & Xaba, P. S. (2016). Production, characterization and flocculation mechanism of bioflocculant TMT-1 from marine Bacillus pumilus JX860616. African Journal of Biotechnology, 15, 2352-2367.

Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource Technology, 282, 361-369. https://doi.org/10.1016/j.biortech.2019.03.037. DOI: https://doi.org/10.1016/j.biortech.2019.03.037

Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., Ghani, A.A. (2022). Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution?. Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/ j.crgsc.2022.100273 DOI: https://doi.org/10.1016/j.crgsc.2022.100273

National Technical Regulation on Industrial Wastewater. (2011). QCVN 40:2011/BTNMT. Retrieved from https://emas.tdtu.edu.vn/sites/emas/files/EMAS/V%C4%83n%20b%E1%BA%A3n%20ph%C3%A1p%20lu%E1%BA%ADt/qcvn-40-n%C6%B0%E1%BB%9Bc-th%E1%BA%A3i-cn.pdf

Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plastic waste generation and management in food packaging industries. Recycling, 6(1), 12. https://doi.org/10.3390/recycling6010012. DOI: https://doi.org/10.3390/recycling6010012

Nwodo U.U., Makapela B., Okaiyeto K., Ntozonke N., Green E., Mabinya L.V., and Okoh A.I. (2016). Assessment of Bacillus pumilus isolated from freshwater milieu for bioflocculant production. Applied Sciences, 6, 211-231. DOI: https://doi.org/10.3390/app6080211

Obebe, S. B., & Adamu, A. A. (2020). Plastic pollution: causes, effects and preventions. International Journal of Engineering Applied Sciences and Technology, 4(12), 85-95. DOI: https://doi.org/10.33564/IJEAST.2020.v04i12.011

Pradhan, S., Dikshit, P. K., & Moholkar, V. S. (2018). Production, ultrasonic extraction, and characterization of poly (3‐hydroxybutyrate) (PHB) using Bacillus megaterium and Cupriavidus necator. Polymers for Advanced Technologies, 29 (8), 2392-2400. https://doi.org/10.1002/pat.4351. DOI: https://doi.org/10.1002/pat.4351

Schulthess, B., Ledermann, R., Mouttet, F., Zbinden, A., Bloemberg, G. V., Böttger, E. C., & Hombach, M. (2014). Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. Journal of Clinical Microbiology, 52(8), 2797-2803. https://doi.org/10.1128/JCM.00049-14. DOI: https://doi.org/10.1128/JCM.00049-14

Seo, J. K., Park, T. S., Kwon, I. H., Piao, M. Y., Lee, C. H., & Ha, J. K. (2013). Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 Isolated from the Rumen of a Native Korean Goat. Asian-Australasian Journal of Animal Sciences, 26 (1), 50-58. https://doi.org/10.5713/ajas.2012.12506 DOI: https://doi.org/10.5713/ajas.2012.12506

Shamala, T. R., Divyashree, M. S., Davis, R., Kumari, K. S., Vijayendra, S. V. N., & Raj, B. (2009). Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian Journal of Microbiology, 49(3), 251-258. https://doi.org/10.1007/s12088-009-0031-z. DOI: https://doi.org/10.1007/s12088-009-0031-z

Singh, G., Mittal, A., Kumari, A., Goel, V., Aggarwal, N. K., & Yadav, A. (2011). Optimization of poly-β-hydroxybutyrate production from Bacillus species. European Journal of Biological Sciences, 3(4), 112-116.

The World Bank. (2022). Towards a national single use plastics roadmap in Vietnam: strategies and options for reducing priority single-use plastics. Retrieved from https://www.worldbank.org/ en/country/vietnam/publication/towards-a-national-single-use-plastics-roadmap-in-vietnam-strategies-and-options-for-reducing-priority-single-use-plasti

Thirumala, M., Reddy, S. V., & Mahmood, S. K. (2010). Production and characterization of PHB from two novel strains of Bacillus spp. isolated from soil and activated sludge. Journal of Industrial Microbiology and Biotechnology, 37(3), 271-278.https://doi.org/10.1007/s10295-009-0670-4. DOI: https://doi.org/10.1007/s10295-009-0670-4

Vahabi, H., Michely, L., Moradkhani, G., Akbari, V., Cochez, M., Vagner, C., Renard E., Saeb R. M., & Langlois, V. (2019). Thermal stability and flammability behavior of poly (3-hydroxybutyrate) (PHB) based composites. Materials, 12(14), 2239. https://doi.org/10.3390/ma12142239. DOI: https://doi.org/10.3390/ma12142239

Wang, J., & Yu, H. Q. (2006). Cultivation of polyhydroxybutyrate-rich aerobic granular sludge in a sequencing batch reactor. Water Science and Technology: Water Supply, 6(6), 81-87. https://doi.org/10.2166/ws.2006.966. DOI: https://doi.org/10.2166/ws.2006.966

Downloads

Published

2023-04-30

How to Cite

Minh, H. K. Q., Thai, N. D., Khoa, T. V. A., Ngoc Thao, N. T., & Sichaem, J. (2023). Isolation and production of polyhydroxybutyrate (PHB) from Bacillus pumilus NMG5 strain for bioplastic production and treatment of wastewater from paper factories. Journal of Experimental Biology and Agricultural Sciences, 11(2), 351–358. https://doi.org/10.18006/2023.11(2).351.358

Issue

Section

RESEARCH ARTICLES

Categories