Characterization of arsenic-resistant endophytic Priestia megaterium R2.5.2 isolated from ferns in an arsenic-contaminated multi-metal mine in Vietnam
DOI:
https://doi.org/10.18006/2022.10(6).1410.1421Keywords:
Endophyte, Fern, Bioremediation, Arsenic, Priestia megateriumAbstract
Bioremediation is a biological process to remove or neutralize environmental pollutants. This study was carried out to investing at the efficacy of arsenic resistant endophytic bacteria isolated from Pteris vittata, Pityrogramma calomelanos, Blenchum orientale, and Nephrolepis exaltata, which grow in a highly arsenic (As) contamination mining site in Vietnam. Their segmented roots, stems, and leaves were homogenized separately and inoculated on LB agar plates containing 5mM As(III) and As(V). A total of 31 arsenic resistant endophytic strains were selected, in which strain R2.5.2 isolated from the root of P. calomelanos had the highest arsenic resistant capability. Strain R2.5.2 tolerated up to 320 mM and 160 mM of arsenate and arsenite, respectively. The strain developed well on a media of 0.1 5% NaCl, at 20-40ºC and pH 5 9, and actively utilized most of the sugar sources. It had a high IAA biosynthesis capacity with an average concentration of 19.14 mg/L, tolerated to 0.5-16 mM concentration of Ag+, Hg2+, Co2+, Ni2+, Cu2+, Cr4+, and reduced As(V). Based on 16s rDNA, R2.5.2 was identified as Priestia megaterium. The ars C gene coding for arsenate reductase catalyzing reduction of As(V) was successfully amplified in P. megaterium R2.5.2. The selected strain may have potential use for bioremediation practice.
References
Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49. doi:https://doi.org/10.1016/j.micres.2019.02.001 DOI: https://doi.org/10.1016/j.micres.2019.02.001
Bali, A. S., & Sidhu, G. P. S. (2021). Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review. Chemosphere, 283, 131050. doi:10.1016/ j.chemosphere.2021.131050 DOI: https://doi.org/10.1016/j.chemosphere.2021.131050
Bashir, S., Iqbal, A., Hasnain, S., & White, J. F. (2021). Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Archives of Microbiology, 203(8), 4901-4912. doi:10.1007/s00203-021-02463-8 DOI: https://doi.org/10.1007/s00203-021-02463-8
Bermanec, V., Paradžik, T., Kazazić, S. P., Venter, C., et al. (2021). Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. Journal of Hazardous Materials, 402, 123437. doi:https://doi.org/10.1016/ j.jhazmat.2020.123437 DOI: https://doi.org/10.1016/j.jhazmat.2020.123437
Biedendieck, R., Knuuti, T., Moore, S. J., & Jahn, D. (2021). The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology. Applied Microbiology and Biotechnology,105(14), 5719-5737. doi:10.1007/s00253-021-11424-6 DOI: https://doi.org/10.1007/s00253-021-11424-6
Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic Acid production by bacteria immobilized on a nitrocellulose membrane. Applied and environmental microbiology, 57(2), 535-538. doi:10.1128/ aem.57.2.535-538.1991 DOI: https://doi.org/10.1128/aem.57.2.535-538.1991
Chen, T., Wei, C., Huang, Z., Huang, Q., et al. (2002). Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation. Chinese Science Bulletin, 47, 902-905. doi:10.1360/02tb9202 DOI: https://doi.org/10.1360/02tb9202
Chung, J. Y., Yu, S. D., & Hong, Y. S. (2014). Environmental source of arsenic exposure. Journal of Preventive Medicine and Public Health, 47(5), 253-257. doi:10.3961/jpmph.14.036 DOI: https://doi.org/10.3961/jpmph.14.036
Crozier, L., Marshall, J., Holmes, A., Wright, K. M., et al. (2021). The role of l-arabinose metabolism for Escherichia coli O157:H7 in edible plants. Microbiology (Reading),167(7), 001070. doi:10.1099/mic.0.001070 DOI: https://doi.org/10.1099/mic.0.001070
Danh, L., Truong, P., Mammucari, R., & Foster, N. (2014). A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris vittata. International journal of phytoremediation,16, 429-453. doi:10.1080/15226514.2013.798613 DOI: https://doi.org/10.1080/15226514.2013.798613
Das, S., & Barooah, M. (2018). Characterization of siderophore producing arsenic-resistant Staphylococcus sp. strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiology,18(1), 104. doi:10.1186/s12866-018-1240-6 DOI: https://doi.org/10.1186/s12866-018-1240-6
Diorio, C., Cai, J., Marmor, J., Shinder, R., & DuBow, M. S. (1995). An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. Journal of Bacteriology, 177(8), 2050-2056. doi:10.1128/jb.177.8.2050-2056.1995 DOI: https://doi.org/10.1128/jb.177.8.2050-2056.1995
Finnegan, P. M., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in physiology,3, 182-182. doi:10.3389/fphys.2012.00182 DOI: https://doi.org/10.3389/fphys.2012.00182
Ghosh, P., Maiti, T., Pramanik, K., Ghosh, S., et al. (2018). The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, 211, 407-419. doi:10.1016/ j.chemosphere.2018.07.148 DOI: https://doi.org/10.1016/j.chemosphere.2018.07.148
Gu, Y., Wang, Y., Sun, Y., Zhao, K., et al. (2018). Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiology,18(1), 42. doi:10.1186/s12866-018-1184-x DOI: https://doi.org/10.1186/s12866-018-1184-x
Gupta, P. K. (2018). Chapter 6 - Metals and micronutrients. In P. K. Gupta (ed) Illustrated Toxicology, (pp 195-223). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-813213-5.00006-7
Gupta, R. S., Patel, S., Saini, N., & Chen, S. (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. International Journal of Systematic and Evolutionary Microbiology,70(11), 5753-5798. doi:10.1099/ijsem.0.004475 DOI: https://doi.org/10.1099/ijsem.0.004475
IARC (2022). List of classifications by cancer sites with sufficient or limited evidence in humans, IARC Monographs Volumes 1–132. Retrieved from https://monographs.iarc.who.int/wp-content/uploads/2019/07/Classifications_by_cancer_site.pdf
Karn, S., & Pan, X. (2016). Biotransformation of As (III) to As (V) and their stabilization in soil with Bacillus sp. XS2 isolated from gold mine tailing of Xinjiang, China. Studies in Environmental Science,3, 592-603. doi:10.3934/environsci.2016.4.592 DOI: https://doi.org/10.3934/environsci.2016.4.592
Kinegam, S., Yingprasertchai, T., Tanasupawat, S., Leepipatpiboon, N., et al. (2008). Isolation and characterization of arsenite-oxidizing bacteria from arsenic-contaminated soils in Thailand. World Journal of Microbiology and Biotechnology,24, 3091-3096. doi:10.1007/s11274-008-9821-4 DOI: https://doi.org/10.1007/s11274-008-9821-4
Lim, K. T., Shukor, M. Y., & Wasoh, H. (2014). Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds. BioMed Research International, 2014, 503784. doi:10.1155/2014/503784 DOI: https://doi.org/10.1155/2014/503784
Luo, S., Chen, L., Chen, J., Xiao, X., et al. (2011). Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere,85(7), 1130-1138. doi:https://doi.org/10.1016/ j.chemosphere.2011.07.053 DOI: https://doi.org/10.1016/j.chemosphere.2011.07.053
Manzoor, M., Abid, R., Rathinasabapathi, B., De Oliveira, L. M., et al. (2019). Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Science of the Total Environment, 660, 18-24. doi:10.1016/j.scitotenv.2019.01.013 DOI: https://doi.org/10.1016/j.scitotenv.2019.01.013
Matzen, S. L., Lobo, G. P., Fakra, S. C., Kakouridis, A., et al. (2021). Arsenic hyperaccumulator Pteris vittata shows reduced biomass in soils with high arsenic and low nutrient availability, leading to increased arsenic leaching from soil. Science of The Total Environment, 818, 151803. doi:10.1016/ j.scitotenv.2021.151803 DOI: https://doi.org/10.1016/j.scitotenv.2021.151803
Mukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Reviews, 26(3), 311-325. doi:10.1111/j.1574-6976.2002.tb00617.x DOI: https://doi.org/10.1111/j.1574-6976.2002.tb00617.x
Nguyen, T. H., Hoang, H. N. T., Bien, N. Q., Tuyen, L. H., & Kim, K.W. (2020). Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam. Environmental Geochemistry and Health, 42(12), 4141-4158. doi:10.1007/s10653-020-00611-5 DOI: https://doi.org/10.1007/s10653-020-00611-5
Nonomura, H. (1974). Key for classification and identification of 458 species of the Streptomycetes included in ISP. Journal of Fermentation Technology,52(2), 78-92.
Owolabi, J. B., & Rosen, B. P. (1990). Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. Journal of bacteriology,172(5), 2367-2371. doi:10.1128/jb.172.5.2367-2371.1990 DOI: https://doi.org/10.1128/jb.172.5.2367-2371.1990
Podolich, O., Ardanov, P., Zaets, I., Pirttilä, A. M., & Kozyrovska, N. (2015). Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 388(1), 367-377. doi:10.1007/s11104-014-2235-1 DOI: https://doi.org/10.1007/s11104-014-2235-1
Rajkumar, M., Ae, N., & Freitas, H. (2009). Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 77(2), 153-160. doi:10.1016/ j.chemosphere.2009.06.047 DOI: https://doi.org/10.1016/j.chemosphere.2009.06.047
Román-Ponce, B., Ramos-Garza, J., Arroyo-Herrera, I., Maldonado-Hernández, J., et al. (2018). Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Archives of Microbiology, 200(6), 883-895. doi:10.1007/s00203-018-1495-1 DOI: https://doi.org/10.1007/s00203-018-1495-1
Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters,529(1), 86-92. doi:10.1016/s0014-5793(02)03186-1 DOI: https://doi.org/10.1016/S0014-5793(02)03186-1
Sambrook, J. (2001). Molecular cloning : a laboratory manual: Cold Spring Harbor Laboratory.
Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental pollution (Barking, Essex : 1987), 156(3), 1164-1170. doi:10.1016/ j.envpol.2008.04.007 DOI: https://doi.org/10.1016/j.envpol.2008.04.007
Shutsrirung, A., Chromkaew, Y., Pathom-aree, W., Choonluchanon, S., & Boonkerd, N. (2013). Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. Soil Science and Plant Nutrition, 59(3), 322-330. doi:10.1080/00380768.2013.776935 DOI: https://doi.org/10.1080/00380768.2013.776935
Simeonova, D. D., Lièvremont, D., Lagarde, F., Muller, D. A. E., et al. (2004). Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiology Letters,237(2), 249-253. doi:10.1111/j.1574-6968.2004.tb09703.x DOI: https://doi.org/10.1111/j.1574-6968.2004.tb09703.x
Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety,112, 247-270. doi:https://doi.org/10.1016/j.ecoenv.2014.10.009 DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009
Souri, Z., Karimi, N., & Sandalio, L. (2017). Arsenic Hyperaccumulation Strategies: An Overview. Frontiers in Cell and Developmental Biology, 5, 67. doi:10.3389/fcell.2017.00067 DOI: https://doi.org/10.3389/fcell.2017.00067
Stafilov, T., Aliu, M., & Sajn, R. (2010). Arsenic in surface soils affected by mining and metallurgical processing in K. Mitrovica
region, Kosovo. International journal of environmental research and public health, 7(11), 4050-4061. doi:10.3390/ijerph7114050 DOI: https://doi.org/10.3390/ijerph7114050
Stolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. Annual review of Microbiology, 60, 107-130. doi:10.1146/annurev.micro.60.080805. 142053 DOI: https://doi.org/10.1146/annurev.micro.60.080805.142053
Thao, P.T.H., Lien, N.T.H., Hieu, N.V. et al. (2021). Characteristics of Pleurotus sp. TD36 and its ability to reduce wood extractives in pretreatment for pulping. European Journal of Wood and Wood Products,79(5), 1315–1324. doi:10.1007/s00107-021-01687-1 DOI: https://doi.org/10.1007/s00107-021-01687-1
Thao, P.T.H., Linh, N.V.M., Lien, N.T.H., &Hieu, N.V. (2016). Biological Characteristics and Antimicrobial Activity of Endophytic Streptomyces sp. TQR12-4 Isolated from Elite Citrus nobilis Cultivar Ham Yen of Vietnam. International journal of Microbiology, 5, 1-7. doi:10.1155/2016/7207818 DOI: https://doi.org/10.1155/2016/7207818
Titah, H. S., Abdullah, S. R. S., Idris, M., Anuar, N., et al. (2018). Arsenic Resistance and Biosorption by Isolated Rhizobacteria from the Roots of Ludwigia octovalvis. International Journal of Microbiology,2018, 3101498. doi:10.1155/2018/3101498 DOI: https://doi.org/10.1155/2018/3101498
Xu, J. Y., Han, Y. H., Chen, Y., Zhu, L. J., & Ma, L. Q. (2016). Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata. Chemosphere, 144, 1233-1240. doi:10.1016/ j.chemosphere.2015.09.102 DOI: https://doi.org/10.1016/j.chemosphere.2015.09.102
Yang, H. C., & Rosen, B. P. (2016). New mechanisms of bacterial arsenic resistance. Biomedical Journal, 39(1), 5-13. doi:10.1016/ j.bj.2015.08.003 DOI: https://doi.org/10.1016/j.bj.2015.08.003
Zacaria Vital, T., Román-Ponce, B., Rivera Orduña, F. N., Estrada de Los Santos, P., et al. (2019). An endophytic Kocuria palustris strain harboring multiple arsenate reductase genes. Archives of Microbiology,201(9), 1285-1293. doi:10.1007/s00203-019-01692-2 DOI: https://doi.org/10.1007/s00203-019-01692-2
Zhu, L. J., Guan, D. X., Luo, J., Rathinasabapathi, B., & Ma, L. Q. (2014). Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere,113, 9-16. doi:10.1016/ j.chemosphere.2014.03.081 DOI: https://doi.org/10.1016/j.chemosphere.2014.03.081
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.