Determination of carbendazim residues in Moroccan tomato samples using local enzyme-linked immunosorbent assay and comparison with liquid chromatography
DOI:
https://doi.org/10.18006/2023.11(2).339.350Keywords:
Carbendazim, Moroccan tomato, HPLC-UV, ELISA, ExtractionAbstract
The fungicide carbendazim (CBZ) is not approved for agricultural uses in some countries but is still used by many farmers due to its effectiveness. For this reason, in previous work of the same authors, they developed a competitive enzyme immunoassay (ELISA) using rabbit polyclonal antibodies to detect CBZ. This study aimed to validate this in-house ELISA after extraction with methanol for CBZ analysis in tomato samples, and the results were compared with the conventional high-performance liquid chromatography (HPLC) method after QuEChERS extraction. The results showed that both ELISA and HPLC methods have good repeatability, reproducibility and high precision with a good variation verified by principal components analysis (PCA). ANOVA tested the detection limit (LOD), and quantification limit (LOQ), and the values for ELISA (LOD = 0.026± 0.001 µg/L and LOQ = 0.083 ± 0.003 µg/L) were significantly lower than those obtained by HPLC (LOD = 0.61 ± 0.02 µg/L and LOQ = 1.85 ± 0.07 µg/L). ELISA and HPLC were used for analyzing CBZ in 100 Moroccan tomato samples. These two methods detected the presence of CBZ above the Maximum Residue Limit (MRL) level in 9 samples. However, the presence of the CBZ was detected in the 79 samples by ELISA and quantified in 66 samples. In contrast, the presence of CBZ was detected in 57 and quantified in 35 samples by HPLC. These results showed that the ELISA system coupled with a simple methanol extraction is much more sensitive than HPLC after QuEChERS extraction.
References
Aylaz, G., Kuhn, J., Lau, E. C., Yeung, C., et al. (2021). Recent developments on magnetic molecular imprinted polymers (MMIPs) for sensing, capturing, and monitoring pharmaceutical and agricultural pollutants. Journal of Chemical Technology & Biotechnology, 96(5), 1151-1160. https://doi.org/10.1002/jctb.6681. DOI: https://doi.org/10.1002/jctb.6681
Barron Cuenca, J., de Oliveira Galvão, M. F., Ünlü Endirlik, B., Tirado, N., et al. (2022). In vitro cytotoxicity and genotoxicity of single and combined pesticides used by Bolivian farmers. Environmental and Molecular Mutagenesis, 63(1), 4-17. https://doi.org/10.1002/em.22468. DOI: https://doi.org/10.1002/em.22468
Bellemjid, N., Iddar, A., Moussaif, A., Abbadi, N. E., et al. (2018). Analysis of carbamates pesticides: immunogical technique by local development of enzyme-linked immuno-sorbent assay. Journal of Pharmacy and Pharmacology, 6, 395-402. https://doi.org/ 10.17265/2328-2150/2018.04.010. DOI: https://doi.org/10.17265/2328-2150/2018.04.010
Ben Khadda, Z., Fagroud, M., El Karmoudi, Y., Ezrari, S., et al. (2021). Farmers’ Knowledge, Attitudes, and Perceptions Regarding Carcinogenic Pesticides in Fez Meknes Region (Morocco). International journal of environmental research and public health, 18(20), 10879.https://doi.org/10.3390/ijerph182010879. DOI: https://doi.org/10.3390/ijerph182010879
Benaboud, J., Elachour, M., Oujidi, J., & Chafi, A. (2021). Pesticides used by Moroccan's farmer in oriental Morocco: Case of Berkane region. Academia Journal of Environmental Sciences, 2(4), 052-058. https://doi.org/10.15413/ajes.2014.0101.
Boscolo, S., Pelin, M., De Bortoli, M., Fontanive, G., et al. (2013). Sandwich ELISA assay for the quantitation of palytoxin and its analogs in natural samples. Environmental science & technology, 47(4), 2034-2042. https://doi.org/10.1021/es304222t. DOI: https://doi.org/10.1021/es304222t
Bouterfas, M., Soufiane, F., Zouheir, C., Elhalouani, H., et al. (2020). Evaluation of farmers' phytosanitary practices in the plain of triffa (astern morocco), identification and evaluation of sanitary and environmental risks. Moroccan Journal of Chemistry, 8(2), 8-2. https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i2.19573.
Choubbane, H., Ouakhssase, A., Chahid, A., Taourirte, M., et al. (2022). Pesticides in fruits and vegetables from the Souss Massa region, Morocco. Food Additives & Contaminants: Part B, 1-10. https://doi.org/10.1080/19393210.2022.2028196. DOI: https://doi.org/10.1080/19393210.2022.2028196
Elshafey, R., Abo-Sobehy, G. F., & Radi, A. E. (2022). Imprinted polypyrrole recognition film cobalt oxide/electrochemically reduced graphene oxide nanocomposite for carbendazim sensing. Journal of Applied Electrochemistry, 52, 45-53. DOI: https://doi.org/10.1007/s10800-021-01613-6
FAO. (2021). Pesticides Use, Pesticides Trade and Pesticides Indicators. Global, Regional and Country Trends, 1990–2019. Analytical Brief Series No. 29. Retrieved from https://www.fao.org/3/cb6034en/cb6034en.pdf
FAOSTAT. (2022). Statistical Databases. Retrieved from http://www.fao.org/faostat/en/#data/RT/visualize/
Kasaeinasab, A., Mahabadi, H. A., Shahtaheri, S. J., Faridbod, F., et al. (2023). Carbendazim trace analysis in different samples by using nanostructured modified carbon paste electrode as voltametric sensor. PloS one, 18(1), e0279816. https://doi.org/ 10.1371/journal.pone.0279816. DOI: https://doi.org/10.1371/journal.pone.0279816
Kim, L., Lee, D., Cho, H. K., & Choi, S. D. (2019). Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends in Environmental Analytical Chemistry, 22, e00063. https://doi.org/10.1016/j.teac.2019.e00063. DOI: https://doi.org/10.1016/j.teac.2019.e00063
Kumar, A., Kumar, V., Gull, A., & Nayik, G.A. (2020). Tomato (Solanum Lycopersicon). In: G.A. Nayik, & A. Gull (eds) Antioxidants in Vegetables and Nuts - Properties and Health Benefits (pp 191-207). Springer, Singapore. https://doi.org/ 10.1007/978-981-15-7470-2_10. DOI: https://doi.org/10.1007/978-981-15-7470-2_10
Lesueur, C., Gartner, M., Mentler, A., & Fuerhacker, M. (2008). Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas chromatography–mass spectrometry and liquid chromatography–ion trap–mass spectrometry. Talanta, 75(1), 284-293. https://doi.org/10.1016/ j.talanta.2007.11.031. DOI: https://doi.org/10.1016/j.talanta.2007.11.031
Liu, D., Gong, Q., Xu, X., Meng, S., et al. (2023). Photoelectrochemical aptasensor based on cascade dual Z-scheme CdTe-polyaniline@ MoS2 heterostructure for the sensitive carbendazim detection. Journal of Electroanalytical Chemistry, 117143. https:// 10.1007/s10800-021-01613-6. DOI: https://doi.org/10.1016/j.jelechem.2023.117143
Liu, H., Wang, Y., Fu, R., Zhou, J., et al. (2021). A multicolor enzyme-linked immunoassay method for visual readout of carbendazim. Analytical Methods, 13(37), 4256-4265. https://doi.org/10.1039/D1AY01028J. DOI: https://doi.org/10.1039/D1AY01028J
Liu, Y. H., Jin, M. J., Gui, W. J., Cheng, J. L., et al. (2007). Hapten design and indirect competitive immunoassay for parathion determination: Correlation with molecular modeling and principal component analysis. Analytica chimicaacta, 591(2), 173-182. https://doi.org/10.1016/j.aca.2007.03.071. DOI: https://doi.org/10.1016/j.aca.2007.03.071
Maftouh, I., Iddar, A., Moussaif, A., El Abbadi, N., et al. (2020). Development of an enzyme-linked immunosorbent assay for detection of Chlorpyrifos-ethyl and its metabolites 3, 5, 6-Trichloro-2-Pyridinol and Diethylthiophosphate. International Journal of Environmental Analytical Chemistry, 100 (12), 1336-1349. https://doi.org/10.1080/03067319.2019.1653456. DOI: https://doi.org/10.1080/03067319.2019.1653456
Magunga, B. T., & Malebo, N. J. (2023). In-vitro assessment of Thyme oil (Thymus vulgaris) as antifungal agent against Phyllosticta citricarpa. Access Microbiology, 000591-v1. https://doi.org/10.1099/acmi.0.000591.v1. DOI: https://doi.org/10.1099/acmi.0.000591.v1
Moussaif, A., El Yahyaoui, A., Saghdani, N., El Kazzouli, S., et al. (2021). Assessment of pesticide residues, exogenous heavy metals and essential minerals in spinach after cleaning with traditional methodologies. International Journal of Environmental Analytical Chemistry, 1-14. https://doi.org/10.1080/03067319.2021.1931857. DOI: https://doi.org/10.1080/03067319.2021.1931857
Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., et al. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in public health, 4, 148.https://doi.org/10.3389/fpubh.2016.00148. DOI: https://doi.org/10.3389/fpubh.2016.00148
ONSSA. (2014). National Food Safety Office/Plant Protection service, Morocco BO n°6322bis. Retrieved from http://eservice.onssa.gov.ma/Docs/arr.156-14.fr.pdf/
Patibanda, A. K., & Ranganathswamy, M. (2018). Effect of agrichemicals on biocontrol agents of plant disease control. In: D. Panpatte, Y. Jhala, H. Shelat, & R. Vyas (eds) Microorganisms for green revolution: Volume 2: Microbes for Sustainable Agro-ecosystem (pp.1-21), Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7146-1_1
Phansawan, B., Prapamontol, T., Thavornyutikarn, P., Chantara, S., et al. (2015). A sensitive method for determination of carbendazim residue in vegetable samples using HPLC-UV and its application in health risk assessment. Chiang Mai Journal of Science, 42, 681-690.
Raab, G. M. (1983). Comparison of a logistic and a mass-action curve for radioimmunoassay data. Clinical chemistry, 29(10), 1757-1761https://doi.org/10.1093/clinchem/29.10.1757. DOI: https://doi.org/10.1093/clinchem/29.10.1757
Rodbard, D. (1981). Mathematics and statistics of ligand assays: An illustrated guide. In J. Langan & J. J. Clapp (Eds.), Ligand Assay: analysis of international developments on isotopic and nonisotopic immunoassay, (pp. 45-99). New York: Masson Publishing.
Sakali, A. K., Bargiota, A., Fatouros, I. G., Jamurtas, A., et al. (2021). Effects on Puberty of Nutrition-Mediated Endocrine Disruptors Employed in Agriculture. Nutrients, 13(11), 4184. https://doi.org/10.3390/Nu13114184. DOI: https://doi.org/10.3390/nu13114184
Sarkar, S., Gil, J. D. B., Keeley, J., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. European Parliament's Committee on Development, PE 653.622.https://doi.org/10.2861/28995.
Scheel, G. L., & Tarley, C. R. T. (2020). Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD. Journal of Molecular Liquids, 297, 111897. https://doi.org/10.1016/ j.molliq.2019.111897. DOI: https://doi.org/10.1016/j.molliq.2019.111897
Sebastian, N., Yu, W. C., Balram, D., Al-Mubaddel, F. S., & Noman, M. T. (2022). Functionalization of CNFs surface with β-cyclodextrin and decoration of hematite nanoparticles for detection and degradation of toxic fungicide carbendazim. Applied Surface Science, 586, 152666. https://doi.org/10.1016/j.apsusc.2022.152666. DOI: https://doi.org/10.1016/j.apsusc.2022.152666
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., et al. (2019). Worldwide Pesticide Usage and its Impacts on Ecosystem. SN Applied Sciences, 1, 1446. https://doi.org/10.1007/S42452-019-1485-1. DOI: https://doi.org/10.1007/s42452-019-1485-1
Song, Y., Xie, C. H., Wang, M. S., Liu, S., et al. (2019). Rapid Determination of Carbendazim Residues in Mushrooms by Immunosorbent Assay1. E3S Web of Conferences, 78, 02018). https://doi.org/10.1051/e3sconf/20197802018. DOI: https://doi.org/10.1051/e3sconf/20197802018
Verdini, E., & Pecorelli, I. (2022). The current status of analytical methods applied to the determination of polar pesticides in food of animal origin: a brief review. Foods, 11(10), 1527. https://doi.org/10.3390/foods11101527. DOI: https://doi.org/10.3390/foods11101527
Wang, J., Xing, C., Xia, J., Chen, H., et al. (2023). Degradation of carbendazim in aqueous solution by dielectric barrier discharge cold plasma: Identification and toxicity of degradation
products. Food Chemistry, 403, 134329. https://doi.org/10.1016/ j.foodchem.2022.134329. DOI: https://doi.org/10.1016/j.foodchem.2022.134329
Wang, X., Song, M., Wang, Y., Gao, C., et al. (2012). Response of soil bacterial community to repeated applications of carbendazim. Ecotoxicology and environmental safety, 75, 33-39. https://doi.org/10.1016/j.ecoenv.2011.08.014. DOI: https://doi.org/10.1016/j.ecoenv.2011.08.014
Wu, W., Li, C., Liu, D., Ji, J., et al. (2022). Ultrasensitive antibody production strategy based on hapten property for simultaneous immunoassay. Food Chemistry, 395, 133565. https://doi.org/ 10.1016/j.foodchem.2022.133565. DOI: https://doi.org/10.1016/j.foodchem.2022.133565
Yan, H., Liu, L., Xu, N., Kuang, H., et al. (2015). Development of an immunoassay for carbendazim based on a class-selective monoclonal antibody. Food and Agricultural Immunology, 26(5), 659-670.https://doi.org/10.1080/09540105.2015.1007446. DOI: https://doi.org/10.1080/09540105.2015.1007446
Zhai, R., Chen, G., Liu, G., Huang, X., et al. (2023). Comparison of Chemiluminescence Enzyme Immunoassay (Cl-ELISA) with Colorimetric Enzyme Immunoassay (Co-ELISA) for Imidacloprid Detection in Vegetables. Foods, 12(1), 196. https://doi.org/ 10.3390/foods12010196. DOI: https://doi.org/10.3390/foods12010196
Downloads
Published
How to Cite
License
Copyright (c) 2023 Journal of Experimental Biology and Agricultural Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.