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ABSTRACT 
 

The current study aimed to evaluate the effects of aspirin (Asp) on growth, physio-biochemical 

variables, and oxidative stress in Brassica juncea subjected to cadmium toxicity. Cadmium (Cd) toxicity 

decreased the root and shoot development by 67.53 % and 64.4 % respectively, over the control. 

However, treatment with Asp showed improved root and shoot growth in Cd treated seedlings. This 

study demonstrates elevation in total soluble sugar (TSS), proline, and glycine betaine levels and 

suppressed total protein concentrations in Cd treated seedlings over control. On the treatment of Asp to 

Cd exposed plants, an enhanced level of the above said variables was reported. The activities of 

superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and ascorbate (ASC) 

increased in plants with Cd stress over control, followed by enhanced elevation of the same on 

supplementation of Asp. Supplementation of Asp reduces the accumulation of malondialdehyde (MDA) 

and H2O2, confirming the plant metals' stress protection properties of Asp. Thus studies confirm aspirin's 

involvement in protecting plant growth and development against cadmium toxicity. 
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1 Introduction  

Plants being immobile are exposed to a wide range of abiotic and 

biotic stress. Among abiotic stress, metal-induced toxicity is the 

most prevailing cause of extensive water and soil pollution 

(Ahmed et al. 2016). Few metals are important for the regular 

functioning of plants, but, many more are deleterious and impede 

normal plant growth and development (Ahmed et al. 2012). 

Cadmium is an environmental pollutant and biologically toxic 

metal (Godt et al. 2006). Cadmium tends to build up in the soil of 

anthropogenic and natural activities (Vitória et al. 2001). Elevated 

levels of heavy metals in the environment, particularly soil result 

in the generation of reactive oxygen species (ROS) (Liu et al. 

2010), this impacts the germination of seeds, growth, and 

development of plants (Jonak et al. 2004) and disrupts the transport 

of electrons in the chloroplast (Cui and Wang 2006). Heavy metals 

also impede photosystems I, and II and interfere with the transfer 

of K
2+

, Ca
2+,

 and abscisic acid in the guard cells of the plants. 

Further, these metals also disturb the Ca
2+

, Zn
2+,

 and Fe
2+

 in 

proteins which results in the release of free radicals (Minglin et al. 

2005). Metals cause the oxidation of biomolecules causing 

oxidative stress and thus cell damage (Romero et al. 2002). 

Oxidative stress results in lipid peroxidation, leading to cell 

membrane disruption (Nouairi et al. 2006). Plants prevent the 

harmful effect of free radicals by enhancing the generation of 

antioxidant enzymes during heavy metal stress. Plants have inbuilt 

enzymatic and nonenzymatic systems like catalase, ascorbate 

peroxidase, and superoxide dismutase to scavenge free radicals 

generated from oxidative stress due to phytotoxicity (Sharath 

Chandra and Sukumaran 2020). 

Exposure to cadmium toxicity changes the enzyme activity of 

superoxide dismutase, catalase, and ascorbate peroxidase, which 

are essential to preserving normal cellular hydrogen peroxide 

levels to shield the cell from oxidative stress-induced cellular and 

tissue damage. Antioxidant enzymes like catalase, SOD, and 

peroxidase are elevated during stress (El-Beltagi et al. 2010). 

Catalase and peroxisomes are found in the cytosol and 

peroxisomes of plants respectively. Cadmium-associated 

deprivation of glutathione causes intracellular hydrogen peroxide 

accumulation which results in cell death (Schutzendubel and Polle, 

2002). Similarly, the accumulation of proline during heavy metal 

stress facilitates protecting the biomolecules from denaturation, 

thus increasing the plant tolerance to abiotic stress (Lesko and 

Simon-Sarkadi 2002). 

Salicylic acid (SA) is not only a plant growth regulator but also an 

important non-enzymatic oxidant, playing a significant part in 

numerous physiological mechanisms in plants (Fariduddin et al. 

2003). Acetylsalicylic acid or aspirin (Asp) is one among the many 

derivatives of salicylic acid. It elicits plants' defense mechanisms 

against diseases and protects plants from viral, bacterial, and 

fungal infections. Aspirin mimics the role of plant growth hormone 

and is involved in the promotion of plant growth. Thus, aspirin 

functions similarly to salicylic acid as a plant hormone (Pallag et 

al. 2014).  Brassica juncea (Indian mustard) is extensively used as 

a model plant for phytoremediation, because of its higher biomass 

and capacity to accumulate high concentrations of heavy metals, 

like cadmium up to 400 µg/g DW in shoots (Haag-Kerwer et al. 

1999). B. juncea possesses ten times more biomass generation 

capacity as compared to other heavy metal accumulators. It also 

shows a fast growth rate and collects other toxic heavy metals 

available in the soil. Thus B. juncea is selected as a suitable plant 

system for phytoremediation studies (Salt et al. 1998). The main 

purpose of the present study is to understand the role of aspirin 

(Asp) in tolerating cadmium-induced toxicity in B. juncea by 

studying growth and development, physio-biochemical variations, 

and oxidative stress. 

2 Materials and Methods 

2.1 Seed collection and Experimental setup 

Certified and viable seeds of B. juncea were surface sterilized for 

10 min with a 5 % sodium hypochlorite (NaOCl) solution. Further, 

priming of seeds was performed with 0.5mM of aspirin (Asp), for 

10 h. Aspirin exposed and non-exposed seeds were grown in Petri 

dishes covered with Whatman filter paper which is set aside in a 

growth chamber with a photoperiod of 24 hrs and incubated for 8 

days. Eight days old germinated seedlings were further transferred 

to trays containing perlite: sand: peat (1:1:1 v/v/v) added with 200 

µM of cadmium solution (cadmium chloride). The control plants 

were subjected to only distilled water. Each exposure is the mean 

of three replications and each replicate contains five plants. The 

samples were obtained for experimentation 12 days after treatment. 

Determination of cadmium and aspirin concentrations was made 

based on earlier reports (Senaratna et al. 2000; Shanmmugaraj et 

al. 2013).  

2.2 Plant growth analysis and biomass accumulation 

The amount of germinated seed was counted and the ratio of 

germination was calculated using the formula 

Germination (%) = 
Total  number  of  seeds  germinated

Total  number  of  seeds  inoculated
 x 100 

The length of the root and shoot were measured manually using a 

scale. Dry weight (W) of the root, shoot, and leaves of the mustard 

plant was dried for 60 h at 65ºC in the oven and then evaluated. 

2.3 Estimation of Glycine betaine and proline levels 

Glycine betaine levels were evaluated based on Grieve and Grattan 

(1983) method. The results were determined at 365 nm by 

spectrophotometer. The dosage for glycine betaine was taken at 
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50-200 mgml
-1

 which was dissolved in 1N H2SO4. Levels of proline 

were evaluated by Bates et al. (1973) method. Absorbance was 

analyzed at 520 nm in a spectrophotometer, with toluene as blank. 

2.4 Estimation of total soluble sugars (TSS) and total protein 

Total soluble sugars (TSS) were determined by Dev (1999) 

method. The absorbance was determined at 485nm using a 

spectrophotometer. Total protein content was assessed by Lowry et 

al. (1951) method. The absorbance was recorded at 595 nm by 

spectrophotometer with BSA as control. 

2.5 Determination of Lipid peroxidation (MDA), Hydrogen 

peroxide (H2O2), and Ascorbate 

Lipid peroxidation (accumulation of malondialdehyde “MDA”) 

was determined by the method of Heath and Packer (1968). 

Optical density was recorded at 600 nm with 20 % TCA 

(trichloroacetic acid) and 1% TBA (thiobarbituric acid) as blank. 

Hydrogen peroxide level was determined by the procedure of 

Velikova et al. (2000). Hydrogen peroxide concentration was 

expressed as µM g
-1 

FW. Ascorbate was measured by the method 

of Foyer et al. (1983). The absorbance was recorded at 265 nm and 

expressed as µM g
-1 

FW. 

2.6 Antioxidant enzyme assays 

Plant material (2g) was homogenized at pH 7.5 in 100 mM Tris 

HCl in the presence of 10 mM magnesium chloride, 5 m 

Mdithiothreitol, 1 mM EDTA, 1.5% polyvinyl pyrolidone, 5 mM 

magnesium acetate and 1 mM phenylmethanesulfonyl. The sample 

was filtered, and the homogenate was centrifuged for 15 min at 

10,000 rpm. Subsequently, after the centrifugation, the supernatant 

was used as a source of enzyme. For determination of APX 

activity, tissues were homogenized separately with 2 mM 

Ascorbate. 

Superoxide dismutase (SOD) activity estimation was performed 

according to Kono (1978), which resulted in the photo-reduction of 

nitroblue tetrazolium (NBT). The readings were taken at 540 nm in 

a spectrophotometer. SOD unit indicates the enzyme quantity that 

impedes 50 % photo-reduction of nitroblue tetrazolium. SOD 

levels were expressed as U g
-1

 FW. 

Catalase activity was determined by the procedure of Aebi (1984). 

The absorbance was read at 240 nm in a spectrophotometer and 

reported as mmol g
-1 

FW. APX activity was assessed by the 

method of Nakano and Asada (1981). The absorbance was 

measured at 265 nm, and the activity was reported as mmol min
-1 

g
-1 

FW. 

2.7 Statistical analysis 

Statistical analysis was performed by one-way analysis of variance 

(ANOVA) and Duncan`s multiple range test (DMRT) was 

employed to determine the significant difference between the 

samples. The values indicate the mean ± SE (n=3). P ≤ 0.05 

significantly differs. 

3 Results  

3.1 Effect of Aspirin on germination and growth under 

cadmium stress 

The observations regarding the influence of cadmium and aspirin 

on the germination and growth of B. juncea are shown in Table 1. 

The toxicity of cadmium reduces the percentage of germination by 

75.86% in comparison to the control. But the application of aspirin 

to cadmium exposed plants exhibited only a 3.44 % decrease in 

germination over the control. Further, cadmium stress led to a 

decrease in the length of both root and shoot (Table 1). Root length 

declined by 67.53 % with cadmium application, however, plants 

exposed to cadmium in presence of aspirin demonstrated enhanced 

root length and were almost similar to the control. Shoot length 

was reduced by 64.4 % under cadmium influence against control 

(Table 1). Supplementation of aspirin improved the shoot length by 

71 % when compared to cadmium-applied plants alone. Dry 

weight (DW) was reduced by 57 % in cadmium-treated plants over 

the control. Aspirin co-application with cadmium exhibited 

enhanced dry weight by 56 % over the plants exposed to only 

cadmium. 

3.2 Aspirin betters Glycine betaine and proline levels under 

cadmium toxicity 

Cadmium toxicity increased glycine betaine content by 24.23 % in 

treated plants over the control (Table 2). However, aspirin co-

Table 1 Effect of Cd (200 µM) and Aspirin (0.5 mM) individually and in combination on various growth parameters of Brassica juncea 

Treatment Germination Root length (cm) Shoot length (cm) Dry weight (mg) 

Control 87 ± 0.57d 6.53 ± 0.21d 13.12 ± 0.44d 63.52 ± 0.25d 

Aspirin 85 ± 0.71d 6.66 ± 0.43d 13.85 ± 0.52d 61.65 ± 0.14d 

Cadmium 21 ± 0.14b 2.12 ± 0.29b 4.67 ± 0.06b 27.53 ± 0.19b 

Cd+Asp 84 ± 0.32a 6.48 ± 0.41a 13.55 ± 0.26a 63.37 ± 0.07a 

Date values are the means of three replicates ± SE. All the values represent a significant difference (P ≤0.05).  Similar superscript denotes no 

significant difference between the means of the treatment in the columns. 
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application to cadmium exposed plants demonstrated a further 

increase of 12 % over cadmium treated plants alone. Proline levels 

were also increased under cadmium stress by 45 % when compared 

to the control (Table 2). Application of aspirin along with 

cadmium exhibited further accumulation of proline levels by 35 % 

over cadmium alone treated plants. 

3.3 Aspirin increases total soluble sugar and total protein 

under cadmium toxicity 

Plants exposed to cadmium stress demonstrated an elevation of 25 

% in total soluble sugar as compared to the control (Table 2). 

However, the co-application of aspirin to Cd-induced stressed 

plants further elevated the total soluble sugars by 24 % over 

cadmium exposed plants. While in the case of total protein levels, 

it diminished by 50 % in cadmium stress-induced plants as 

compared to the control (Table 2). Supplementation of aspirin to 

cadmium stressed plants exhibited a 53 % increase in protein levels 

over cadmium alone treated plants. 

3.4 Aspirin preserves MDA and hydrogen peroxide content 

under cadmium toxicity 

Accumulation of malondialdehyde (MDA) was 70 % under 

cadmium toxicity as compared to the control. Aspirin co-

application with cadmium demonstrated a reduction in MDA 

accumulation by 41 % in comparison to cadmium treated plants 

(Table 3). Hydrogen peroxide levels in plants increased by 52 % 

under cadmium stress over the control (Table 3). However, the 

addition of aspirin to cadmium exposed plants lowered the 

accumulation of hydrogen peroxide by 38 % in comparison to only 

cadmium treated plants. Plants treated with only aspirin displayed 

no significant changes in MDA and hydrogen peroxide levels. 

3.5 Impact of aspirin and cadmium on antioxidant enzyme 

activity 

The observations of antioxidant enzymes and non-enzymatic 

responses on individual or combined application of cadmium and 

aspirin treated B.juncea plants are presented in table 3. Further, 

superoxide dismutase activity increased by 35 % in cadmium 

treated plants; further elevated by 41 % upon co-application of 

aspirin to cadmium exposed plants. Catalase and APX elevated by 

66 % and 39 % respectively in cadmium stresses plants in 

comparison to the control (Table 3). However, aspirin 

supplementation to cadmium treated plants further elevated by 73 

% and 59 % over cadmium stressed plants alone. The Ascorbate 

(ASC) levels also increased by 26 % in cadmium stressed plants 

over control; further, the levels of ascorbate enhanced by 40 % on 

co-application of aspirin to only cadmium treated plants. 

4 Discussion 

Abiotic stress due to heavy metal pollution is a globally frequently 

seen phenomenon. At higher concentrations, heavy metals can 

aggregate in plants that cause toxic effects leading to undesirable 

Table 2 Effect of individual and combined application of Cd (200 µM) and Aspirin (0.5 mM) on Protein, Total soluble  

sugar (TSS), proline, and glyicine betaine level in Brassica juncea 

Treatment Protein mg g-1 FW TSS µgg-1 FW Proline µgg-1 FW Glycine betaine µmolg-1FW 

Control 7.65 ± 0.24d 4.66 ± 0.18d 9.62 ± 0.04d 3.72 ± 0.12d 

Aspirin 7.81 ± 0.43d 4.95 ± 0.16d 14.19 ± 0.25c 3.79 ± 0.55d 

Cadmium 3.77 ± 0.51b 6.22 ± 0.37b 17.33 ± 0.51b 4.91 ± 0.02b 

Cd+Asp 6.53 ± 0.15a 8.16 ± 0.12a 26.48 ± 0.28a 5.53 ± 0.19a 

Date values are the means of three replicates ± SE. All the values represent a significant difference (P ≤0.05).  Similar superscript denotes no 

significant difference between the means of the treatment in the columns 

 

Table 3 Effect of an individual or combined application of Cd (200 µM) and aspirin (0.5 mM) on various enzymes and  

oxidative stress markers 

Treatments Antioxidant enzymes Non-enzymatic oxidants Oxidative stress markers 

 
SOD 

(U g-1 FW) 

CAT 

(mmolg-1 FW) 

APX 

(mmolmin-1 g-1 FW) 

ASC 

(µmg-1FW) 

MDA 

(µMg-1FW) 

H2O2 

(nmg-1 FW) 

Control 45 ± 0.12d 0.58 ± 0.06d 2.54 ± 0.17d 253 ± 1.2d 2.19 ± 0.04d 336 ± 1.6d 

Aspirin 52 ± 0.55c 1.02 ± 0.13d 2.42 ± 0.23d 295 ± 1.7c 2.21 ± 0.16d 323 ± 2.6d 

Cadmium 69 ± 1.2b 1.72 ± 0.55b 4.17 ± 0.44b 342 ± 0.9b 7.05 ± 0.32b 697 ± 3.4b 

Cd+Asp 76 ± 0.73a 2.11 ± 0.09a 6.09  ± 0.36a 422 ± 1.5a 4.16 ± 0.07a 431 ± 1.5a 

Date values are the means of three replicates ± SE. All the values represent a significant difference (P ≤0.05).  Similar superscript denotes no 

significant difference between the means of the treatment in the columns 
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variations in morphological, biochemical, and physiological 

mechanisms (Chandra et al. 2017; Mahadimane and Chandra 

2020;). In this study, cadmium treated plants demonstrated 

significant variation in the germination of seeds, biomass content, 

root length and shoot length over the control plants. The seeds 

treated with cadmium exhibited underdeveloped growth and 

limited root formation. Inhibition of plant growth and decrease in 

biomass content is the primary phenomenon that takes place in 

response to abiotic stress due to heavy metal toxicity (Shekhawat 

et al. 2010; Rashmi et al. 2019). The reduction in the root length 

and shoot length observed may be associated with the buildup of 

cadmium in the plant roots that diminishes the uptake of minerals 

and water, which will eventually influence the plant's biochemical 

mechanisms and physiology. Elevated concentration of cadmium 

in the soil leads to root tip damage, a decrease in the transportation 

of water to multiple tissues that in due course results in declined 

transpiration rate and inhibition of photosynthesis by disturbing the 

enzymes catalyzing the Calvin cycle, finally leading to stunted 

growth (Baudhha and Singh 2011; Shanmmugaraj et al. 2013; 

Ranjitha and Sharath Chandra 2020). During metal induced stress 

third of the root growth decreased and it matched with the 

underdeveloped shoot system. The observations were in correlation 

with Baudhh and Singh (2011) and Shanmmugaraj et al. (2013). 

Cadmium toxicity elevates proline levels in the current study 

(Table 2) and results are in correlation with the findings of Sirhindi 

et al. (2016) who also described the elevation of proline levels in T. 

aestivum under heavy metal toxicity. Proline buildup under heavy 

metal toxicity has been identified as a potential marker of abiotic 

stress tolerance (Ashraf and Foolad 2007). Proline helps in 

rebuilding chlorophyll, activates the citric acid cycle, and amounts 

to the energy source (Ramon et al. 2003). Proline also plays a 

major role in osmotic regulation and stabilized biomolecules. 

Proline possesses the ability to scavenge free radicals and protect 

cells and tissues from oxidative damage (Ahmad et al. 2015). 

Glycine betaine (GB) also increases with cadmium toxicity (Table 

3) and is reported as an important solute under heavy metal stress 

(Munns 2005). Similarly, glycine betaine also plays multiple roles 

in maintaining membrane integrity, stabilizing the PS II complex, 

osmotic regulation, preserving RUBISCO activity, and 

detoxification of reactive oxygen species (Ashraf and Foolad 

2007). Glycine betaine is also involved in protecting the protein's 

structural integrity from stress due to heavy metals (Sakamoto and 

Murata 2002). Under metal toxicity, glycine betaine and proline 

have been shown to regulate gene expression by activation of 

transcription and replication (Rajendrakumar et al. 1997). Aspirin, 

a derivative of natural plant growth regulator salicylic acid, was 

found to be playing a potentially similar biological role to that of 

salicylic acid in the present study. Proline with free radical 

scavenging capacity might be triggered by aspirin to defend the 

cell from the oxidative burst. Glycine betaine content elevates 

aspirin exposure and the results correlate with reports on plant 

growth regulators by Gao et al (2004). External application of 

aspirin enhances the GB levels due to the up-regulation of betaine 

aldehyde dehydrogenase (BADH) expression (Gao et al. 2004). 

Soluble proteins are known to reduce with an increase in heavy 

metal toxicity (Perva et al. 2020). The reduction in protein levels in 

response to cadmium toxicity and similar heavy metal stress 

increases protease activity, which causes protein degradation 

(Palma et al. 2002). Cadmium caused protein content decline, 

which may be due to the production of free radicals and binding of 

heavy metals to protein –SH groups that denature protein structure 

and further diminish the activity of –SH-containing enzymes 

(Seregin and Kozhevnikova 2006). In the present study, aspirin 

increases the total protein levels which corroborates with reports 

on similar plant growth regulators. Several reports suggest that 

many proteins synthesized during abiotic stress may be due to 

growth regulators like salicylic acid, and jasmonic acid (Thaler 

1999). Plant stress regulators have been known to increase the 

expression of various proteins during abiotic stress. The elevation 

in total soluble sugar levels under cadmium toxicity may be 

attributed to over resistance of photosynthetic organelle (Prokopiev 

1978) and depleted transport of starch to cells of the mesophyll. 

Increased accumulation of toxic heavy metals disrupts the 

metabolism of carbon because of the undesirable interaction of the 

ribulose-bisphosphate carboxylase enzyme (Stiborova et al. 1987). 

Elevated sugar may also be associated with the degradation of 

starch. Sugar build-up results in the plants absorbing extra water 

from the neighboring environment (Hajar et al. 1996) 

Hydrogen peroxide is a lethal reactive oxygen species (ROS) and 

increases with cadmium stress, and the findings (Table 3) correlate 

with Hao et al. (2006). Heavy metal toxicity is also known to 

facilitate the accumulation of hydrogen peroxide in wheat leaves 

(Gajewska et al 2006). Malondialdehyde (MDA) is a result of lipid 

peroxidation and is an indicator of oxidative stress (Chandra and 

Sukumaran 2020). Heavy metal stress has been reported to 

increase hydrogen peroxide and lipoxygenase activity, which 

causes lipid peroxidation. Increased MDA content is also reported 

in eggplant during heavy metal stress (Pandey and Rajeev 2010). 

Additionally, several heavy metals are reported to cause an 

elevation in MDA content in Bruguiera gymnorrhiza thus 

considered an important biomarker in the identification of abiotic 

stress (Zhang et al. 2007). In the present study co-application of 

aspirin curtails the generation of hydrogen peroxide, which can 

preserve the impact on membrane lipids. Reduction in MDA levels 

during cadmium toxicity with supplementation of growth regulator 

was also reported in Kandelia obovata (Chen et al. 2014). Aspirin 

might play a similar role to other plant regulators in scavenging 

free radicals thus avoiding the accumulation of hydrogen peroxide, 

avoid lipid peroxidation, and accumulation of MDA.  
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Ascorbate, which is found in most flora and fauna, is an important 

non-enzymatic antioxidant synthesized in the mitochondria. 

Ascorbate levels were increased in cadmium induced toxicity in 

the present study. The oxidative outburst caused by cadmium is 

negated by the ascorbate cycle thus defending cellular damage 

(Singh et al. 2006), however, supplementation of aspirin further 

increased the concentration of ascorbate, confirming the 

antioxidant system response in plants for the growth regulator. 

The elevation in antioxidant enzyme activities can be seen in Table 

3 and agrees with the study of Awasthi and Sinha (2013) 

conducted on Luffa cylindrical during heavy metal toxicity. 

Superoxide dismutase (SOD) which is considered the primary 

defense enzyme system in living beings increases under metal 

toxicity in eggplant (Pandey and Rajeev 2010). Heavy metal stress 

is found to increase ascorbate peroxidase activity in several plant 

models as wheat (Gajewska et al. 2006) and rice (Maheshwari and 

Dubey, 2009). Increased catalase and ascorbate peroxidase activity 

has been reported in Wolfia arrhiza under abiotic stress due to 

heavy metals (Piotrowska et al. 2009). Aspirin increases the 

activity of antioxidant enzymes in the present study (Table 3), 

which coincides with the findings of Chen et al. (2014). 

B. juncea is shown to increase the expression of the catalase 3 gene 

(CAT3) under cadmium toxicity (Minglin et al. 2005). Gene 

expression of SOD, CAT, and APX is also been reported to 

increase in Chickpea under saline conditions (Rasool et al. 2013). 

Conclusion 

Elevated levels of cadmium in the soil are harmful to plant growth, 

development, and productivity. Biochemical and physiological 

stress induced by cadmium toxicity is irreversible and leads to 

adverse effects on root and shoot growth, biochemical variables, 

and oxidative stress in the present study. However, the co-

application of aspirin alleviates the toxic effects of cadmium 

through the regulation of osmotic and biochemical mechanisms. 

Application of aspirin in soil known to be affected with cadmium 

content may be a sustainable way to protect the plants and thus 

enhance their productivity. 
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