Impact of Metallic Nanoparticles on the Nutritional Values of Spirulina

Authors

  • Raveenderan Sithambaram Department of Food and Agriculture Science, Faculty of Science, UniversitiTunku Abdul Rahman, Kampar, Perak, Malaysia https://orcid.org/0000-0002-0799-9641
  • Sinouvassane Djearamane Department of Biomedical Science, Faculty of Science, UniversitiTunku Abdul Rahman, Kampar, Perak, Malaysia https://orcid.org/0000-0002-8251-662X
  • Sharolynne Xiao Tong Liang Department of Biomedical Science, Faculty of Science, UniversitiTunku Abdul Rahman, Kampar, Perak, Malaysia
  • Ling Shing Wong Department of Biotechnology, Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia https://orcid.org/0000-0002-5869-0804
  • Ranjithkumar Rajamani Viyen Biotech LLP, Coimbatore, Tamil Nadu – 641 031, India https://orcid.org/0000-0001-7438-0200
  • Senthilkumar Balasubramanian Department of Zoology, Thiruvalluvar University, Vellore, Tamilnadu, India

DOI:

https://doi.org/10.18006/2022.10(5).978.986

Keywords:

Spirulina, Nutritional properties, Cyanobacteria, Metal toxicity, Environmental toxicity, Therapeutic values

Abstract

Spirulina has high nutritional values and anti-oxidative properties. It is a staple diet due to its easy cultivation and greater nutritional values in biological macromolecules (proteins, lipids, and carbohydrates), pigments (chlorophyll, carotenoids, phycobiliproteins) vitamins, minerals, phenolic compounds, and amino acids. Spirulina also has been used as a nutraceutical to treat numerous diseases and disorders due to its promising therapeutic values. However, extensive anthropogenic activities cause the discharge of metals and metallic nanoparticles into the environment that might cause toxicity to marine and freshwater microalgae due to bioaccumulation. The presence of metals in the environment beyond the normal range does not only affect the growth but also the nutritional values of microalgae. The nutritional properties and usage of Spirulina along with the harmful effects of metals and metallic nanoparticles on Spirulina are highlighted and summarized in this paper.

References

Al-Dhabi, N. A., & ValanArasu, M. (2016). Quantification of phytochemicals from commercial Spirulina products and their antioxidant activities. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID 7631864, https://doi.org/ 10.1155/2016/7631864 DOI: https://doi.org/10.1155/2016/7631864

Al-Harbi, N.A. (2008). Physiological and biotechnological studies on the microalga Dunaliella, the bacterium Halomonas, and the cyanobacteria Arthrospira and Spirulina. PhD thesis, submitted to the University of Sheffield, United Kingdom.

Al-Qahtani, W.H., & Binobead, M.A. (2019). Anti-inflammatory, antioxidant and antihepatotoxic effects of Spirulina platensis against d-galactosamine induced hepatotoxicity in rats. Saudi Journal of Biological Sciences, 26, 647-652. DOI: https://doi.org/10.1016/j.sjbs.2018.01.003

Ama Moor, V. J., Nya Biapa, P. C., Nono Njinkio, B. L., Moukette Moukette, B., et al. (2017). Hypolipidaemic effect and activation of lecithin cholesterol acyl transferase (LCAT) by aqueous extract of Spirulina platensis during toxicological investigation. BMC Nutrition, 3, 25. DOI: https://doi.org/10.1186/s40795-017-0146-2

Assaye, H., Belay, A., Desse, G., & Gray, D. (2018). Seasonal variation in the nutrient profile of Arthrospira fusiformis biomass harvested from an Ethiopian soda lake, Lake Chitu. Journal of Applied Phycology, 30, 1597-1606. DOI: https://doi.org/10.1007/s10811-017-1359-0

Augusto de Costa, A.C., & de Franca, F.P.(1998). Cadmium uptake by Spirulina maxima: toxicity and mechanism. World Journal of Microbiology and Biotechnology, 14, 579-581. DOI: https://doi.org/10.1023/A:1008888031994

Balaji, S., Kalaivani, T., & Rajasekaran, C. (2013). Biosorption of zinc and nickel and its effect on growth of different spirulina strains. CLEAN-Soil, Air, Water, 42, 207-512. DOI: https://doi.org/10.1002/clen.201200340

Becker. E.W. (2013). Microalgae for human and animal nutrition. In A. Richmond (Ed.) Handbook of Microalgal culture: Biotechnology and Applied Phycology, 2nd ed. (pp 461-503). Wiley Online Library. DOI: https://doi.org/10.1002/9781118567166.ch25

Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719-728. DOI: https://doi.org/10.1007/s00217-012-1798-4

Belal, E.B., & El-Hais, A.M.A.(2012). Use of spirulina (Arthrospira fusiformis) for promoting growth of Nile Tilapia fingerlings. African Journal of Microbiology Research, 6, 6423-6431. DOI: https://doi.org/10.5897/AJMR12.288

Carlsson, D.J. (1978). Singlet Oxygen. Reactions with Organic Compounds and Polymers. Journal of Polymer Science: Polymer Letters Edition, 16(9) 485-486. DOI: https://doi.org/10.1002/pol.1978.130160914

Bensehaila, S., Doumandji, A., Boutekrabt, L., Manafikhi, H., et al. (2015). The nutritional quality of Spirulina platensis of Tamenrasset, Algeria. African Journal of Biotechnology, 14(19), 1649-1654.

Casazza, A.A., Ferrari, P.F., Aliakbarian, B., Converti, A., et al. (2015). Effect of UV radiation or titanium dioxide on polyphenol and lipid contents of Arthrospira (Spirulina) platensis. Algal Research,12, 308-315. DOI: https://doi.org/10.1016/j.algal.2015.09.012

Castro-Bugallo, A., González-Fernández, Á., Guisande, C., & Barreiro, A. (2014). Comparative responses to metal oxide nanoparticles in marine phytoplankton. Archives of Environmental Contamination and Toxicology, 67, 483-493. DOI: https://doi.org/10.1007/s00244-014-0044-4

Chen, H., Pan, G., & Qin, Y.(2003). Toxic effects of hexavalent chromium on the growth of blue-green microalgae. Chinese Journal of Environmental Science, 24, 13-18.

Comotto, M., Casazza, A. A., Aliakbarian, B., Caratto, V., et al. (2014). Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms. The Scientific World Journal, 2014, Article ID 961437, https://doi.org/10.1155/2014/961437. DOI: https://doi.org/10.1155/2014/961437

Da Silva Vaz, B., Costa, J.A.V., & de Morais, M.G. (2016). CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Applied Biochemistry and Biotechnology, 178(2), 418-429. DOI: https://doi.org/10.1007/s12010-015-1876-8

Deniz, F., Saygideger, S., & Karaman, S. (2011). Response to copper and sodium chloride excess in Spirulina sp. (cyanobacteria). Bulletin of Environmental Contamination and Toxicology, 87, 11-15. DOI: https://doi.org/10.1007/s00128-011-0300-5

Desai, K., & Sivakami, S. (2004). Spirulina: The wonder Food of the 21st century. Asia-Pacific Biotech News, 8(23), 1298-1302. DOI: https://doi.org/10.1142/S021903030400223X

DiNicolantonio, J.J., McCarty, M., & OKeefe, J. (2019). Does elevated bilirubin aid weight control by preventing development of hypothalamic leptin resistance? Open Heart, 6, 1-7. DOI: https://doi.org/10.1136/openhrt-2018-000897

Djearamane, S., Lim, Y.M., Wong, L.S., & Lee, P.F.(2018). Cytotoxic effects of zinc oxide nanoparticles on cyanobacterium Spirulina (Arthrospira) platensis. Peer J, 6, 2018. DOI: https://doi.org/10.7717/peerj.4682

Djearamane, S., Wong, L.S, Lim, Y.M., & Lee,P.F. (2019). Cytotoxic effects of zinc oxide nanoparticles on Chlorella Vulgaris. Pollution Research, 38(2), 479-484.

Djearamane, S., Wong, L.S., Lim, Y.M., & Lee, P.F. (2020). Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecology. Environment & Conservation, 26 (2), 663-668.

Dubey, I. (2021). Study on the toxic effects of heavy metals in sediments and water of river Ganga. International Journal on Biological Sciences, 26(2), 663-668. DOI: https://doi.org/10.53390/ijbs.v12i2.7

Ekubo, A. T., & Abowei, J. F. N. (2011). Aspects of aquatic pollution in Nigeria. Research Journal of Environmental and Earth Sciences, 3(6), 673-693.

El-Sheekh, M. M., El-Naggar, A. H., Osman, M. E. H., & El-Mazaly, E. (2003). Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchiaperminuta. Brazilian Journal of Plant Physiology, 15, 159-166. DOI: https://doi.org/10.1590/S1677-04202003000300005

Falquet, J., & Hurni, J. P. (1997). The nutritional aspects of Spirulina. Antenna Foundation. Retrieved from https://www. antenna. ch/wp-content/uploads/2017/03/AspectNut_UK.pdf Accessed July 25, 2017.

Farrar, W.V. (1966). Tecuitlatl; A glimpse of Aztec food technology. Nature, 211, 341-342. DOI: https://doi.org/10.1038/211341a0

Fournier, D. B., & Gordon, G. B. (2000). COX‐2 and colon cancer: potential targets for chemoprevention. Journal of Cellular Biochemistry, 77(34), 97-102. DOI: https://doi.org/10.1002/(SICI)1097-4644(2000)77:34+<97::AID-JCB16>3.0.CO;2-Z

Gouveia, L., Batista, A.P., Sousa, I., Raymundo, A., et al. (2008). Microalgae in novel food products. Food Chemistry Research Developments. New York: Nova Science Publishers, Inc.

Govindaraju, K., Basha, S.K., Kumar, V.G., & Singaravelu, G. (2008). Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. Journal of Materials Science, 43, 5115-5122. DOI: https://doi.org/10.1007/s10853-008-2745-4

Hawkes, S. J. (1997). What is a" heavy metal"?. Journal of Chemical Education, 74(11), 1374. DOI: https://doi.org/10.1021/ed074p1374

Henrikson, R. (2010). Spirulina: World Food, How This Micro Algae Can TransformYour ealth and OurPlanet. Ronore Enterprise, Inc., USA, ISBN 1453766987, 195.

Hoseini, S.M., Khosravi-Darani, K., & Mozafari, M.R. (2013). Nutritional and medical applications of spirulina microalgae. Mini Reviews in Medicinal Chemistry, 13, 1231-1237. DOI: https://doi.org/10.2174/1389557511313080009

Houston, M. (2002). The Potential Application of Spirulina (Arthrospira) as a Nutritional and Therapeutic Supplement in Health Management. Retrieved from http://biomatsa. com/uploads/spirulinareprintJANA. pdf accessed on 19 October 2015.

Hussein, S.A., Abd el-hamid, O.M., El-tawil, O.S., Laz, E.S., et al. (2019). Attenuating effect of Spirulina platensis against mycotoxin induced oxidative stress and liver damage in male albino rats. International Journal of Pharma Sciences, 9, 2039-2044

Iwasa, M., Yamamoto, M., Tanaka, Y., Kaito, M., et al. (2002). Spirulina-associated hepatotoxicity. American Journal of Gastroenterology, 97, 3212-3213. DOI: https://doi.org/10.1111/j.1572-0241.2002.07145.x

Jaime, L., Mendiola, J. A., Herrero, M., Soler‐Rivas, C., et al. (2005). Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC‐DAD. Journal of Separation Science, 28 (16), 2111-2119. DOI: https://doi.org/10.1002/jssc.200500185

Karimi, A., & Moradi, M.T. (2015). Total phenolic compounds and in vitro antioxidant potential of crude methanol extract and the correspond fractions of Quercus brantii L. acorn. Journal of HerbMed Pharmacology, 4, 35-39.

Khan, Z., Bhadouria, P., & Bisen, P.S. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6, 373-379. DOI: https://doi.org/10.2174/138920105774370607

Koru, E. (2012). Earth food Spirulina (Arthrospira): Production and quality standards. Food Additive. Turkey, IntechOpen publication. DOI: https://doi.org/10.5772/31848

Koru, E., Cirik, S., & Turan, G. (2008). The use of Spirulina for fish feed production in Turkey, University-Industry Co-Operation Project (USIGEM). E. Koru, Penyunt.) Project Principle Investigator and Consultant, 100.

Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., et al. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24. DOI: https://doi.org/10.1016/j.fshw.2019.03.001

Kulshreshtha, A., Jarouliya, U., Bhadauriya, P., Prasad, G. B. K. S., et al. (2008). Spirulina in health care management. Current Pharmaceutical Biotechnology, 9(5), 400-405. DOI: https://doi.org/10.2174/138920108785915111

Liang, S.X.T., Wong, L.S, Balu, P., & Djearamane, S. (2021). Therapeutic applications of Spirulinaagainst human pathogenic viruses. Journal of Experimental Biology and Agricultural Sciences, 9 (Spl-1- GCSGD_2020), 38-42. DOI: https://doi.org/10.18006/2021.9(Spl-1-GCSGD_2020).S38.S42

Liang, S.X.T., Wong, L.S, Dhanapal, A.C.T.A., & Djearamane, S. (2020). Toxicity of metals and metallic nanoparticles on nutritional properties of microalgae. Water, Air, & Soil Pollution, 231(2), 1-14. DOI: https://doi.org/10.1007/s11270-020-4413-5

Lima, F., Joventino, I. P., Joventino, F. P., de Almeida, A. C., et al. (2017). Neuroprotective Activities of Spirulina platensis in the 6-OHDA Model of Parkinson's Disease Are Related to Its Anti-Inflammatory Effects. Neurochemical research, 42(12), 3390–3400. https://doi.org/10.1007/s11064-017-2379-5. DOI: https://doi.org/10.1007/s11064-017-2379-5

Lone, J.A., Kumar, A., Kundu, S., Lone, F.A., et al. (2013). Characterization of Tolerance limit in Spirulina platensis in relation to nanoparticles. Water, Air, Soil Pollution, 224(9), 1-6. DOI: https://doi.org/10.1007/s11270-013-1670-6

Mao, T.K., Water, J.V.D., & Gershwin, M.E.(2005). Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. Journal of Medicinal Food, 8, 27-30. DOI: https://doi.org/10.1089/jmf.2005.8.27

Matassa, S., Boon, N., Pikaar, I., & Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microbial Biotechnology, 9, 568-575. DOI: https://doi.org/10.1111/1751-7915.12369

Mazokopakis, E.E., Karefilakis, C.M., Tsartsalis, A.N., Milkas, A.N., et al. (2008). Acute rhabdomyolosis caused by Spirulina (Arthospiraplatenis). Phytomedicine, 15, 525-527. DOI: https://doi.org/10.1016/j.phymed.2008.03.003

McCarty, M. F., Barroso-Aranda, J., & Contreras, F. (2010). Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Medical hypotheses, 74(3), 601-605. DOI: https://doi.org/10.1016/j.mehy.2008.09.061

Michael, A., Kyewalyanga, M.S., Mtolera, M.S., & Lugomela, C.V. (2018). Antioxidants activity of the cyanobacterium, Arthrospira (Spirulina) fusiformis cultivated in a low-cost medium. African Journal of Food Science, 12, 188-195. DOI: https://doi.org/10.5897/AJFS2018.1688

Molino, A., Iovine, A., Casella, P., Mehariya, S., et al. (2018). Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. International Journal of Environmental Research and Public Health, 15 (11), 2436. DOI: https://doi.org/10.3390/ijerph15112436

Morais, M. G. D., Radmann, E. M., Andrade, M. R., Teixeira, G. G., et al. (2009).Pilot scale semicontinuous production of Spirulina biomass in southern Brazil. Aquaculture, 294, 60-64. DOI: https://doi.org/10.1016/j.aquaculture.2009.05.009

Mushtaq, N., Singh, D. V., Bhat, R. A., Dervash, M. A., et al. (2020). Freshwater contamination: sources and hazards to aquatic biota. In H., Qadri, R., Bhat, M., G., Mehmood Dar (eds) Fresh Water Pollution Dynamics and Remediation (pp. 27-50). Singapore, Springer. DOI: https://doi.org/10.1007/978-981-13-8277-2_3

Navarro, E., Baun, A., Behra, R., Hartmann, N. B., et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology, 17 (5), 372-386. DOI: https://doi.org/10.1007/s10646-008-0214-0

Okuyama, H., Tominaga, A., Fukuoka, S., Taguchi, T., Kusumoto, Y., & Ono, S. (2017). Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ. Oncology reports, 37(2), 684–694. https://doi.org/10.3892/ or.2017.5346. DOI: https://doi.org/10.3892/or.2017.5346

Papapetropoulos, S. (2007). Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration?: The beta-N-methylamino-L-alanine (BMAA) paradigm. Neurochemistry International, 50(7-8), 998-1003. DOI: https://doi.org/10.1016/j.neuint.2006.12.011

Praveena, S. M., Aris, A. Z., & Radojevic, M. (2010). Heavy metals dyanamics and source in intertidal mangrove sediment of Sabah, Borneo Island. Environment Asia, 3, 79-83.

Rafiqul, I., Hassan, A., Sulebele, G., Orosco, C., et al. (2003). Influence of temperature on growth and biochemical composition of Spirulina platensis and S. fusiformis. Iranian International Journal of Science, 4, 97-106.

Raj, T.K., Ranjithkumar, R., Kanthesh, B.M., & Gopenath, T.S. (2020). C-phycocyanin of Spirulina plantesis inhibits nsp12 required for replication of sars-COV-2: A novel finding in-silico.International Journal of Pharmaceutical Science Research, 11(9), 4271-4278.

Rajamani, S., Siripornadulsil, S., Falcao, V., Torres, M., Colepicolo, P., & Sayre, R. (2007). Phycoremediation of heavy metals using transgenic microalgae. Advances in experimental medicine and biology, 616, 99–109. https://doi.org/10.1007/978-0-387-75532-8_9 DOI: https://doi.org/10.1007/978-0-387-75532-8_9

Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and Applied Phycology (Vol. 577), Oxford, Blackwell Science.

Riss, J., Décordé, K., Sutra, T., Delage, M., et al. (2007). Phycobiliprotein C-phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. Journal of Agricultural and Food Chemistry, 55(19), 7962-7967. DOI: https://doi.org/10.1021/jf070529g

Saçan, M. T., Oztay, F., & Bolkent, S. (2007). Exposure of Dunaliella tertiolecta to lead and aluminum: Toxicity andeffects on ultrastructure. Biological Trace Element Research, 120, 264-272. DOI: https://doi.org/10.1007/s12011-007-8016-4

Shamsudin, L., Rashid, S. A., Abdullah, A. N., Mohamed, W. Z., et al. (2019). Effect of dietary high protein frog meal supplementation on the anti-hypercholesterolemic influenza, growth performance, feed conversion and blood serum chemistry in tilapia, Oreochromis aureus. European Journal of Biotechnology and Bioscience, 7, 12-17.

Shao, W., Ebaid, R., El-Sheekh, M., Abomohra, A., et al. (2019). Pharmaceutical applications and consequent environmental impacts of Spirulina (Arthrospira): An overview. Grasasy Aceites, 70, 292. DOI: https://doi.org/10.3989/gya.0690181

Shilpi, G, Sunita, S., & Sweta, S. (2014). Hexavalent chromium toxicity to cyanobacterium Spirulina platensis. International Research Journal of Pharmacy, 5, 910-914. DOI: https://doi.org/10.7897/2230-8407.0512184

Siddiqui, M.W., & Prasad, K.(2017). Plant Secondary Metabolites, Volume One: Biological and Therapeutic Significance. India: CRC Press. DOI: https://doi.org/10.1201/9781315366326

Stanic-Vucinic, D., Minic, S., Nikolic, M.R., & Velickovic, T.C. (2018). Spirulina phycobiliproteins as food components and complements.In E. Jacob-Lopes, L. Q., Zepka, & M. I., Queiroz (Eds.), Microalgal Biotechnology. Intech Open. DOI: https://doi.org/10.5772/intechopen.73791

Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marinealgae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23-30. DOI: https://doi.org/10.1016/j.ecoenv.2014.11.015

Thenarasu A., Chai M.K., Wong L. S. & Djearamane S, et al. (2022). Effect of Titanium, Silver and Zinc Nanoparticles on Microalgae in the Aquatic Environment. Journal of Experimental Biology and Agricultural Sciences, 10(4), 767–772. DOI: https://doi.org/10.18006/2022.10(4).767.772

Tsao, T. M., Chen, Y. M., & Wang, M. K. (2011). Origin, separation and identification of environmental nanoparticles: a review. Journal of Environmental Monitoring, 13(5), 1156-1163. DOI: https://doi.org/10.1039/c1em10013k

Upasani, C. D., Khera, A., & Balararnan, R. (2001). Effect of lead with vitamin E, C, or Spirulina on malondialdehyde, conjugated dienes and hydroperoxides in rats. Indian Journal Experiment Biology, 39, 70–74.

Wali, A., Gupta, M., Mallick, S.A., Guleria, S., et al. (2015). Antioxidant potential and phenol profile of Bael leaf (Aegle marmelos). Indian Journal of Agricultural Biochemistry, 28, 138-142. DOI: https://doi.org/10.5958/0974-4479.2015.00007.6

Wan, D., Wu, Q., &Kuca, K. (2016). Spirulina. Nutraceuticals, 569-583. DOI: https://doi.org/10.1016/B978-0-12-802147-7.00042-5

Wu, Q., Liu, L., Miron, A., Klímová, B., et al. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817-1840. DOI: https://doi.org/10.1007/s00204-016-1744-5

Xia, B., Chen, B., Sun, X., Qu, K.,et al. (2015).Interaction of TiO2 nanoparticles with the marine microalgaNitzschiaclosterium: Growth inhibition, oxidative stress andinternalization. Science of the Total Environment, 508, 525-533. DOI: https://doi.org/10.1016/j.scitotenv.2014.11.066

Yap, C. K., & Al-Mutairi, K. A. (2021). Ecological-health risk assessments of heavy metals (Cu, Pb, and Zn) in aquatic sediments from the ASEAN-5 emerging developing countries: A review and synthesis. Biology, 11(1), 7. DOI: https://doi.org/10.3390/biology11010007

Zinicovscaia, I., Chiriac, T., Cepoi, L., Rudi, L., et al. (2017). Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles. Canadian Journal of Microbiology, 63(1), 27-34. DOI: https://doi.org/10.1139/cjm-2016-0339

Downloads

Published

2022-10-31

How to Cite

Sithambaram, R., Djearamane, S., Tong Liang, S. X., Wong, L. S., Rajamani, R., & Balasubramanian, S. (2022). Impact of Metallic Nanoparticles on the Nutritional Values of Spirulina. Journal of Experimental Biology and Agricultural Sciences, 10(5), 978–986. https://doi.org/10.18006/2022.10(5).978.986

Issue

Section

REVIEW ARTICLES