Angiotensin Converting Enzyme 2 (ACE2) - A macromolecule and its impact on human reproduction during COVID-19 pandemic

Authors

DOI:

https://doi.org/10.18006/2022.10(5).960.977

Keywords:

Novel Coronavirus, SARS, ACE2, Reproduction, Male Infertility, Female infertility, Seminal plasma, Testes, Ovary

Abstract

Coronavirus disease 2019 (COVID 19) is caused by severe acute respiratory syndrome novel coronavirus 2 (SARS-nCoV-2). It has been declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Since then, several researchers have worked/ are working on this virus by a multifactorial approach to finding out the mechanism of entry, transmission route, post-infection replication process, survival, and post-recovery utilities. As we know, SARS, MERS, and Zika viruses have affected human reproductive potentials, consequently, COVID 19 also can affect both men's and women's reproductive potential through ACE2 macromolecule. This study aimed to summarize the role of ACE2- macromolecule in COVID 19 entry and further processes in the reproductive path of both men and women. Research articles were searched in NCBI-NLM, Google Scholar, and Scopus databases. We searched based on the phrase “COVID 19”, “ACE2”, “ACE2 in testes”, “ACE2 in the female reproductive tract”, “ACE2 during pregnancy”, “ACE2 during early embryo”, “COVID 19 and impact in human reproduction” and selected the articles for summarizing this article. Most recent articles and the mechanism of COVID 19 were selected for our understanding. The results of the study revealed that  COVID 19 impacts the reproductive potential of both men and women. Testes are the most vulnerable organ prone to infection in men, and vaginal fluid and the uterus could be the choice of infection in the female. Till now, COVID 19 has not been directly detected in semen samples and vaginal fluid. Results of the study can be concluded that ACE2 plays a major role in COVID 19 infection, ACE2 expression could be more in the testes, ovary, uterus, and vagina. COVID 19 could impact more on human reproduction and lead to a loss of fertility status for a while. All antiviral treatments could pose a negative impact on human reproduction. Further research should be carried out on the already existing theoretical hypothesis of SARS-Co-V-2 on human reproduction.

References

Abdolmaleki, G., Taheri, M. A., Paridehpour, S., Mohammadi, N. M., Tabatabaei, Y. A., Mousavi, T., & Amin, M. (2022). A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 1–28. Advance online publication. https://doi.org/10.1007/s40199-022-00446-8. DOI: https://doi.org/10.1007/s40199-022-00446-8

Abdolrazaghnejad, A., & Miraj, S. (2022). Can Coronavirus Disease 2019 Effect on Human Reproduction?. Advanced biomedical research, 11, 55. https://doi.org/10.4103/abr.abr_236_21

Abhari, S., & Kawwass, J. F. (2020). Endometrial susceptibility to SARS CoV-2: explained by gene expression across the menstrual cycle?. Fertility and Sterility, 114(2), 255-256. DOI: https://doi.org/10.1016/j.fertnstert.2020.06.046

Adhikari, S. P., Meng, S., Wu, Y. J., Mao, Y. P., Ye, R. X., Wang, Q. Z., & Zhou, H. (2020). Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infectious diseases of poverty, 9(1), 1-12. DOI: https://doi.org/10.1186/s40249-020-00646-x

Aitken, R. J. (2021). COVID‐19 and human spermatozoa—Potential risks for infertility and sexual transmission?. Andrology, 9(1), 48-52. DOI: https://doi.org/10.1111/andr.12859

Akhtar, J., & Shukla, D. (2009). Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry. The FEBS journal, 276(24), 7228-7236. DOI: https://doi.org/10.1111/j.1742-4658.2009.07402.x

Ali, I., & Alharbi, O. M. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the total Environment, 728, 138861. DOI: https://doi.org/10.1016/j.scitotenv.2020.138861

Andrews, M. G., Mukhtar, T., Eze, U. C., Simoneau, C. R., Ross, J., Parikshak, N., & Kriegstein, A. R. (2022). Tropism of SARS-CoV-2 for human cortical astrocytes. Proceedings of the National Academy of Sciences, 119(30), e2122236119. DOI: https://doi.org/10.1073/pnas.2122236119

Anifandis, G., Messini, C. I., Daponte, A., & Messinis, I. E. (2020). COVID-19 and fertility: a virtual reality. Reproductive BioMedicine Online, 41(2), 157-159. DOI: https://doi.org/10.1016/j.rbmo.2020.05.001

Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. (2017). The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of clinical and diagnostic research: JCDR, 11(5), IE01. DOI: https://doi.org/10.7860/JCDR/2017/23927.9886

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Brüggen, M. C., & Akdis, C. A. (2020). Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy, 75(7), 1564-1581. DOI: https://doi.org/10.1111/all.14364

Balawender, K., Pliszka, A., Krowiak, A., Sito, M., Grabarek, B. O., & Boroń, D. (2022). Does SARS-CoV-2 affect male urogenital system?. Current Pharmaceutical Biotechnology, 23 (15), 1792-1799. DOI: https://doi.org/10.2174/1389201023666220307102147

Barletta, W. A. (2022). The influence of SARS-CoV-2 variants on national case-fatality rates: correlation and validation study. JMIRx Med, 3(2), e32935. DOI: https://doi.org/10.2196/32935

Bernie, A. M., Mata, D. A., Ramasamy, R., & Schlegel, P. N. (2015). Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertility and sterility, 104(5), 1099-1103. DOI: https://doi.org/10.1016/j.fertnstert.2015.07.1136

Bhowmick, N. A., Oft, J., Dorff, T., Pal, S., Agarwal, N., Figlin, R. A., & Gong, J. (2020). COVID-19 and androgen-targeted therapy for prostate cancer patients. Endocrine-Related Cancer, 27(9), R281-R292. DOI: https://doi.org/10.1530/ERC-20-0165

Blaskó, Z., Papadimitriou, E., & Manca, A. R. (2020). How will the COVID-19 crisis affect existing gender divides in Europe? (Vol. 5). Luxembourg: Publications Office of the European Union.

Bourgeon, F., Evrard, B., Brillard-Bourdet, M., Colleu, D., Jégou, B., & Pineau, C. (2004). Involvement of semenogelin-derived peptides in the antibacterial activity of human seminal plasma. Biology of reproduction, 70(3), 768-774. DOI: https://doi.org/10.1095/biolreprod.103.022533

Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., & van Goor, H. (2020). Angiotensin‐converting enzyme 2 (ACE2), SARS‐CoV‐2 and the pathophysiology of coronavirus disease 2019 (COVID‐19). The Journal of pathology, 251(3), 228-248. DOI: https://doi.org/10.1002/path.5471

Brann, D., Tsukahara, T., Weinreb, C., Logan, D. W., & Datta, S. R. (2020). Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. BioRxiv, 10(2020.03), 25-009084.

Calicchio, R., Doridot, L., Miralles, F., Mehats, C., & Vaiman, D. (2014). DNA methylation, an epigenetic mode of gene expression regulation in reproductive science. Current pharmaceutical design, 20(11), 1726-1750. DOI: https://doi.org/10.2174/13816128113199990517

Carp-Veliscu, A., Mehedintu, C., Frincu, F., Bratila, E., et al. (2022). The effects of SARS-CoV-2 infection on female fertility: A review of the literature. International Journal of Environmental Research and Public Health, 19(2), 984. DOI: https://doi.org/10.3390/ijerph19020984

Cavalcante, M. B., Sarno, M., da Silva, A. C. B., & Barini, R. (2020). COVID-19 and human reproduction: hypothesis needs to be investigated. Molecular Human Reproduction, 26(7), 549-550. DOI: https://doi.org/10.1093/molehr/gaaa041

Chadchan, S. B., Popli, P., Maurya, V. K., & Kommagani, R. (2021). The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization. Biology of reproduction, 104(2), 336-343. DOI: https://doi.org/10.1093/biolre/ioaa211

Chakraborty, C., Sharma, A. R., Bhattacharya, M., Dhama, K., & Lee, S. S. (2022). Altered gut microbiota patterns in COVID-19: Markers for inflammation and disease severity. World Journal of Gastroenterology, 28(25), 2802. DOI: https://doi.org/10.3748/wjg.v28.i25.2802

Chanana, N., Palmo, T., Sharma, K., Kumar, R., Graham, B. B., & Pasha, Q. (2020). Sex-derived attributes contributing to SARS-CoV-2 mortality. American Journal of Physiology-Endocrinology and Metabolism, 319(3), E562-E567. DOI: https://doi.org/10.1152/ajpendo.00295.2020

Chau, A. S., Weber, A. G., Maria, N. I., Narain, S., Liu, A., Hajizadeh, N., & Kaplan, B. (2021). The longitudinal immune response to coronavirus disease 2019: chasing the cytokine storm. Arthritis & Rheumatology, 73(1), 23-35. DOI: https://doi.org/10.1002/art.41526

Chen, H., Guo, J., Wang, C., Luo, F., Yu, X., Zhang, W., & Zhang, Y. (2020b). Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The lancet, 395(10226), 809-815. DOI: https://doi.org/10.1016/S0140-6736(20)30360-3

Chen, W., Yuan, P., Yang, M., Yan, Z., Kong, S., Yan, J., Liu, X., Chen, Y., Qiao, J., & Yan, L. (2020a). SARS-CoV-2 Entry Factors: ACE2 and TMPRSS2 Are Expressed in Peri-Implantation Embryos and the Maternal-Fetal Interface. Engineering (Beijing, China), 6(10), 1162–1169. https://doi.org/10.1016/j.eng.2020.07.013 DOI: https://doi.org/10.1016/j.eng.2020.07.013

Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ‐protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19. Journal of medical virology, 92(7), 726-730. DOI: https://doi.org/10.1002/jmv.25785

Colaco, S., Chhabria, K., Singh, D., Bhide, A., Singh, N., Singh, A., & Modi, D. (2020). A single-cell RNA expression map of coronavirus receptors and associated factors in developing human embryos. arXiv preprint arXiv:2004.04935.

Contini, C., Di Nuzzo, M., Barp, N., Bonazza, A., De Giorgio, R., Tognon, M., & Rubino, S. (2020). The novel zoonotic COVID-19 pandemic: An expected global health concern. The journal of infection in developing countries, 14(03), 254-264. DOI: https://doi.org/10.3855/jidc.12671

Corona, G., Baldi, E., Isidori, A. M., Paoli, D., Pallotti, F., De Santis, L., & Lombardo, F. (2020). SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS)(Società Italiana di Andrologia e Medicina della Sessualità). Journal of endocrinological investigation, 43(8), 1153-1157. DOI: https://doi.org/10.1007/s40618-020-01290-w

Coronel-Restrepo, N., Posso-Osorio, I., Naranjo-Escobar, J., & Tobón, G. J. (2017). Autoimmune diseases and their relation with immunological, neurological and endocrinological axes. Autoimmunity reviews, 16(7), 684-692. DOI: https://doi.org/10.1016/j.autrev.2017.05.002

Cremades, N., Sousa, M., Silva, J., Viana, P., Sousa, S., Oliveira, C., & Barros, A. (2004). Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes. Human Reproduction, 19(2), 300-305. DOI: https://doi.org/10.1093/humrep/deh059

Cui, P., Chen, Z., Wang, T., Dai, J., Zhang, J., Ding, T., & Wang, S. (2020). Clinical features and sexual transmission potential of SARS-CoV-2 infected female patients: a descriptive study in Wuhan, China. MedRxiv, 2020. DOI: 10.1101/2020.02.26.20028225. DOI: https://doi.org/10.1101/2020.02.26.20028225

Darbani, B. (2020). The expression and polymorphism of entry machinery for COVID-19 in human: juxtaposing population groups, gender, and different tissues. International journal of environmental research and public health, 17(10), 3433. DOI: https://doi.org/10.3390/ijerph17103433

Datta, P. K., Liu, F., Fischer, T., Rappaport, J., & Qin, X. (2020). SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics, 10(16), 7448. DOI: https://doi.org/10.7150/thno.48076

de Albuquerque, B. H. D. R., de Oliveira, M. T. F. C., Aderaldo, J. F., de Medeiros Garcia Torres, M., & Lanza, D. C. F. (2022). Human seminal virome: a panel based on recent literature. Basic and Clinical Andrology, 32(1), 1-20. DOI: https://doi.org/10.1186/s12610-022-00165-9

De Iuliis, G. N., Newey, R. J., King, B. V., & Aitken, R. J. (2009). Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PloS one, 4(7), e6446. DOI: https://doi.org/10.1371/journal.pone.0006446

de Souza Silva, G. A., da Silva, S. P., da Costa, M. A. S., da Silva, A. R., de Vasconcelos Alves, R. R., Tenório, F. D. C. Â. M., & de Melo, C. M. L. (2020). SARS-CoV, MERS-CoV and SARS-CoV-2 infections in pregnancy and fetal development. Journal of gynecology obstetrics and human reproduction, 49(10), 101846. DOI: https://doi.org/10.1016/j.jogoh.2020.101846

Delli Muti, N., Finocchi, F., Tossetta, G., Salvio, G., Cutini, M., Marzioni, D., & Balercia, G. (2022). Could SARS-CoV-2 infection affect male fertility and sexuality?. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica, 130(5), 243–252. https://doi.org/10.1111/apm.13210 DOI: https://doi.org/10.1111/apm.13210

Domińska, K. (2020). Involvement of ACE2/Ang-(1-7)/MAS1 axis in the regulation of ovarian function in mammals. International Journal of Molecular Sciences, 21(13), 4572. DOI: https://doi.org/10.3390/ijms21134572

Donders, G. G., Bosmans, E., Reumers, J., Donders, F., Jonckheere, J., Salembier, G., & Depuydt, C. E. (2022). Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: a prospective, observational study and validation of the SpermCOVID test. Fertility and sterility, 117(2), 287-296. DOI: https://doi.org/10.1016/j.fertnstert.2021.10.022

Douglas, G. C., O’Bryan, M. K., Hedger, M. P., Lee, D. K., Yarski, M. A., Smith, A. I., & Lew, R. A. (2004). The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology, 145(10), 4703-4711. DOI: https://doi.org/10.1210/en.2004-0443

Dutta, S., & Sengupta, P. (2021). SARS-CoV-2 and male infertility: possible multifaceted pathology. Reproductive Sciences, 28(1), 23-26. DOI: https://doi.org/10.1007/s43032-020-00261-z

Espinola, M. S. B., Bertelli, M., Bizzarri, M., Unfer, V., Laganà, A. S., Visconti, B., & Aragona, C. (2021). Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. Journal of Reproductive Immunology, 144, 103271. DOI: https://doi.org/10.1016/j.jri.2021.103271

Ezechukwu, H. C., Shi, J., Fowora, M. A., Diya, C. A., Elfaki, F., & Adegboye, O. A. (2022). Fetoplacental transmission and placental response to SARS-CoV-2: Evidence from the literature. Frontiers in medicine, 9, 962937. DOI: https://doi.org/10.3389/fmed.2022.962937

Feys, S., Gonçalves, S. M., Khan, M., Choi, S., Boeckx, B., Chatelain, D., & Wauters, J. (2022). Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. The Lancet Respiratory Medicine, DOI:https://doi.org/10.1016/S2213-2600(22)00259-4. DOI: https://doi.org/10.1016/S2213-2600(22)00259-4

Gemmati, D., Bramanti, B., Serino, M. L., Secchiero, P., Zauli, G., & Tisato, V. (2020). COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males?. International journal of molecular sciences, 21(10), 3474. DOI: https://doi.org/10.3390/ijms21103474

Gizzi, G., Mazzeschi, C., Delvecchio, E., Beccari, T., & Albi, E. (2022). Possible Stress–Neuroendocrine System–Psychological Symptoms Relationship in Pregnant Women during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 19(18), 11497. DOI: https://doi.org/10.3390/ijerph191811497

Goolam, M., Xypolita, M. E., Costello, I., Lydon, J. P., DeMayo, F. J., Bikoff, E. K., & Mould, A. W. (2020). The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nature communications, 11(1), 1-12. DOI: https://doi.org/10.1038/s41467-020-16603-z

Granados-Bolivar, M. E., Quesada-Caballero, M., Suleiman-Martos, N., Romero-Béjar, J. L., Albendín-García, L., Cañadas-De la Fuente, G. A., & Caballero-Vázquez, A. (2022). Evolution of Acute Respiratory Distress Syndrome in Emergency and Critical Care: Therapeutic Management before and during the Pandemic Situation. Medicina, 58(6), 726. DOI: https://doi.org/10.3390/medicina58060726

Guo, L., Ren, L., Yang, S., Xiao, M., Chang, D., Yang, F., & Wang, J. (2020). Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clinical infectious diseases, 71(15), 778-785. DOI: https://doi.org/10.1093/cid/ciaa310

Hanscom, D., Clawson, D. R., Porges, S. W., Bunnage, R., Aria, L., Lederman, S., & Carter, C. S. (2020). Polyvagal and global cytokine theory of safety and threat Covid-19–plan B. SciMedicine Journal, 2, 9-27. DOI: https://doi.org/10.28991/SciMedJ-2020-02-SI-2

Harb, J., Debs, N., Rima, M., Wu, Y., et al. (2022). SARS-CoV-2, COVID-19, and reproduction: Effects on fertility, pregnancy, and neonatal life. Biomedicines, 10(8), 1775. DOI: https://doi.org/10.3390/biomedicines10081775

Harmer, D., Gilbert, M., Borman, R., & Clark, K. L. (2002). Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS letters, 532(1-2), 107-110. DOI: https://doi.org/10.1016/S0014-5793(02)03640-2

Hecht, J. L., Quade, B., Deshpande, V., Mino-Kenudson, M., Ting, D. T., Desai, N., & Roberts, D. J. (2020). SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Modern Pathology, 33(11), 2092-2103. DOI: https://doi.org/10.1038/s41379-020-0639-4

Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Molecular systems biology, 16(7), e9610. DOI: https://doi.org/10.15252/msb.20209610

Hoffman, M., Chigbu, D. I., Crumley, B. L., Sharma, R., Pustylnikov, S., Crilley, T., & Jain, P. (2020). Human acute and chronic viruses: Host-pathogen interactions and therapeutics. In Advanced concepts in human immunology: Prospects for disease control (pp. 1-120). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-33946-3_1

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280. DOI: https://doi.org/10.1016/j.cell.2020.02.052

Holzinger, D., Jorns, C., Stertz, S., Boisson-Dupuis, S., Thimme, R., Weidmann, M., & Kochs, G. (2007). Induction of MxA gene expression by influenza A virus requires type I or type III interferon signaling. Journal of virology, 81(14), 7776-7785. DOI: https://doi.org/10.1128/JVI.00546-06

Huntley, B. J., Huntley, E. S., Di Mascio, D., Chen, T., Berghella, V., & Chauhan, S. P. (2020). Rates of maternal and perinatal mortality and vertical transmission in pregnancies complicated by severe acute respiratory syndrome coronavirus 2 (SARS-Co-V-2) infection: a systematic review. Obstetrics & Gynecology, 136(2), 303-312. DOI: https://doi.org/10.1097/AOG.0000000000004010

Inhorn, M. C., & Patrizio, P. (2015). Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human reproduction update, 21(4), 411-426. DOI: https://doi.org/10.1093/humupd/dmv016

Islam, A., Rahman, A., Bahadur, N. M., Hossen, F., et al. (2022). A 30-day follow-up study on the prevalence of SARS-COV-2 genetic markers in wastewater from the residence of COVID-19 patient and comparison with clinical positivity. Science of The Total Environment, 159350. DOI: https://doi.org/10.1016/j.scitotenv.2022.159350

Jebril, N.M.T. (2020). World Health Organization declared a pandemic public health menace: a systematic review of the coronavirus disease 2019 “COVID-19”. International Journal of Psychosocial Rehabilitation, 24 (9), 2784-2792. DOI: 10.37200/IJPR/V24I9/PR290311. DOI: https://doi.org/10.2139/ssrn.3566298

Ji, X., Zhang, C., Zhai, Y., Zhang, Z., Zhang, C., Xue, Y., & Niu, G. (2020). TWIRLS, an automated topic-wise inference method based on massive literature, suggests a possible mechanism via ACE2 for the pathological changes in the human host after coronavirus infection. bioRxiv, doi: https://doi.org/10.1101/2020.02.27.967588. DOI: https://doi.org/10.1101/2020.02.27.967588

Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 12(4), 372. DOI: https://doi.org/10.3390/v12040372

Kajihara, H., Yamada, Y., Kanayama, S., Furukawa, N., Noguchi, T., Haruta, S., & Kobayashi, H. (2010). Clear cell carcinoma of the ovary: potential pathogenic mechanisms. Oncology reports, 23(5), 1193-1203. DOI: https://doi.org/10.3892/or_00000750

Karimabad, M. N., Hassanshahi, G., Kounis, N. G., Mplani, V., Roditis, P., Gogos, C., & Koniari, I. (2022). The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines, 10(8), 1299. DOI: https://doi.org/10.3390/vaccines10081299

Karimi-Zarchi, M., Neamatzadeh, H., Dastgheib, S. A., Abbasi, H., Mirjalili, S. R., Behforouz, A., & Bahrami, R. (2020). Vertical transmission of coronavirus disease 19 (COVID-19) from infected pregnant mothers to neonates: a review. Fetal and pediatric pathology, 39(3), 246-250. DOI: https://doi.org/10.1080/15513815.2020.1747120

Khawar, M. B., Mehmood, R., & Roohi, N. (2019). MicroRNAs: Recent insights towards their role in male infertility and reproductive cancers. Bosnian Journal of Basic Medical Sciences, 19(1), 31. DOI: https://doi.org/10.17305/bjbms.2018.3477

Knez, J. (2013). Endocrine-disrupting chemicals and male reproductive health. Reproductive biomedicine online, 26(5), 440-448. DOI: https://doi.org/10.1016/j.rbmo.2013.02.005

Kobayashi, H., Yamada, Y., Kanayama, S., Furukawa, N., Noguchi, T., Haruta, S., Yoshida, S., Sakata, M., Sado, T., & Oi, H. (2009). The role of hepatocyte nuclear factor-1beta in the pathogenesis of clear cell carcinoma of the ovary. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society, 19(3), 471–479. https://doi.org/10.1111/IGC.0b013e3181a19eca. DOI: https://doi.org/10.1111/IGC.0b013e3181a19eca

Kokkinaki, T., & Hatzidaki, E. (2022). COVID-19 Pandemic-Related Restrictions: Factors That May Affect Perinatal Maternal Mental Health and Implications for Infant Development. Frontiers in pediatrics, 10, 846627. https://doi.org/10.3389/fped.2022.846627 DOI: https://doi.org/10.3389/fped.2022.846627

Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., & Montefiori, D. C. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812-827. DOI: https://doi.org/10.1016/j.cell.2020.06.043

La Vignera, S., Cannarella, R., Condorelli, R. A., Torre, F., Aversa, A., & Calogero, A. E. (2020). Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D. International journal of molecular sciences, 21(8), 2948. DOI: https://doi.org/10.3390/ijms21082948

Leal, M. C., Pinheiro, S. V., Ferreira, A. J., Santos, R. A., Bordoni, L. S., Alenina, N., & França, L. R. (2009). The role of angiotensin‐(1–7) receptor Mas in spermatogenesis in mice and rats. Journal of Anatomy, 214(5), 736-743. DOI: https://doi.org/10.1111/j.1469-7580.2009.01058.x

Li, H., Xiao, X., Zhang, J., Zafar, M. I., Wu, C., Long, Y., & Xiong, C. (2020b). Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine, 28, 100604. DOI: https://doi.org/10.1016/j.eclinm.2020.100604

Li, M., Chen, L., Zhang, J., Xiong, C., & Li, X. (2020a). The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PloS one, 15(4), e0230295. DOI: https://doi.org/10.1371/journal.pone.0230295

Li, R., Yin, T., Fang, F., Li, Q., Chen, J., Wang, Y., & Qiao, J. (2020c). Potential risks of SARS-CoV-2 infection on reproductive health. Reproductive biomedicine online, 41(1), 89-95. DOI: https://doi.org/10.1016/j.rbmo.2020.04.018

Liu, H., Wang, L. L., Zhao, S. J., Kwak-Kim, J., Mor, G., & Liao, A. H. (2020). Why are pregnant women susceptible to COVID-19? An immunological viewpoint. Journal of reproductive immunology, 139, 103122. DOI: https://doi.org/10.1016/j.jri.2020.103122

Liu, J., Ji, H., Zheng, W., Wu, X., Zhu, J. J., Arnold, A. P., & Sandberg, K. (2010). Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biology of sex differences, 1(1), 1-11. DOI: https://doi.org/10.1186/2042-6410-1-6

Liu, X., Chen, Y., Tang, W., Zhang, L., Chen, W., Yan, Z., & Qiao, J. (2020). Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Science China Life Sciences, 63(7), 1006-1015. DOI: https://doi.org/10.1007/s11427-020-1705-0

Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., & Huang, A. L. (2020). Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature medicine, 26(8), 1200-1204. DOI: https://doi.org/10.1038/s41591-020-0965-6

Louis, T. J., Qasem, A., Abdelli, L. S., & Naser, S. A. (2022). Extra-Pulmonary Complications in SARS-CoV-2 Infection: A Comprehensive Multi Organ-System Review. Microorganisms, 10(1), 153. DOI: https://doi.org/10.3390/microorganisms10010153

Ma, X., Liang, M., Ding, M., Liu, W., Ma, H., Zhou, X., & Ren, H. (2020). Extracorporeal membrane oxygenation (ECMO) in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia and acute respiratory distress syndrome (ARDS). Medical science monitor: international medical journal of experimental and clinical research, 26, e925364-1. DOI: https://doi.org/10.12659/MSM.925364

Malki M. I. (2022). COVID-19 and male infertility: An overview of the disease. Medicine, 101(27), e29401. https://doi.org/10.1097/ MD.0000000000029401 DOI: https://doi.org/10.1097/MD.0000000000029401

Margiana, R., Sharma, S. K., Khan, B. I., Alameri, A. A., Opulencia, M., Hammid, A. T., Hamza, T. A., Babakulov, S. K., Abdelbasset, W. K., & Jawhar, Z. H. (2022). The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathology, research and practice, 238, 154128. Advance online publication. https://doi.org/10.1016/j.prp.2022.154128 DOI: https://doi.org/10.1016/j.prp.2022.154128

Masterson, J. M., Bui, C., Hasan, W., Zhang, Y., Huynh, C., Jawanda, H., Luthringer, D., Tourtellotte, W., Vail, E., & Garcia, M. M. (2022). Case series - COVID-19 is unlikely to affect male fertility: Results of histopathological and reverse transcriptase polymerase chain reaction analysis. Canadian Urological Association journal = Journal de l'Association des urologues du Canada, 10.5489/cuaj.7850. Advance online publication. https://doi.org/10.5489/cuaj.7850 DOI: https://doi.org/10.5489/cuaj.7850

Matin, N., Sarhadi, K., Crooks, C. P., Lele, A. V., Srinivasan, V., Johnson, N. J., Robba, C., Town, J. A., & Wahlster, S. (2022). Brain-Lung Crosstalk: Management of Concomitant Severe Acute Brain Injury and Acute Respiratory Distress Syndrome. Current treatment options in neurology, 24(9), 383–408. https://doi.org/10.1007/s11940-022-00726-3 DOI: https://doi.org/10.1007/s11940-022-00726-3

Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., & Takeda, M. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proceedings of the National Academy of Sciences, 117(13), 7001-7003. DOI: https://doi.org/10.1073/pnas.2002589117

McClelland, K. S., Bell, K., Larney, C., Harley, V. R., Sinclair, A. H., Oshlack, A., & Bowles, J. (2015). Purification and transcriptomic analysis of mouse fetal Leydig cells reveals candidate genes for specification of gonadal steroidogenic cells. Biology of reproduction, 92(6), 145-1. DOI: https://doi.org/10.1095/biolreprod.115.128918

McKee, D. L., Sternberg, A., Stange, U., Laufer, S., & Naujokat, C. (2020). Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacological research, 157, 104859. DOI: https://doi.org/10.1016/j.phrs.2020.104859

Menezo, Y. J., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reproductive biomedicine online, 33(6), 668-683. DOI: https://doi.org/10.1016/j.rbmo.2016.09.006

Menon, R., Otto, E. A., Sealfon, R., Nair, V., et al. (2020). SARS-CoV-2 receptor networks in diabetic and COVID-19 associated kidney disease. medRxiv : the preprint server for health sciences, 2020.05.09.20096511. https://doi.org/10.1101/2020.05.09.20096511 DOI: https://doi.org/10.1101/2020.05.09.20096511

Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature reviews immunology, 20(6), 355-362. DOI: https://doi.org/10.1038/s41577-020-0331-4

Meteeb, R. L., & Al-Dhalimy, A. M. B. (2020). The relation between maternal age with placental weight: Histological study. EurAsian Journal of BioSciences, 14(1), 529-533.

Miller, D., Garcia-Flores, V., Romero, R., Galaz, J., Pique-Regi, R., & Gomez-Lopez, N. (2022). Single-Cell Immunobiology of the Maternal–Fetal Interface. The Journal of Immunology, 209(8), 1450-1464. DOI: https://doi.org/10.4049/jimmunol.2200433

Minich, D. M., Henning, M., Darley, C., Fahoum, M., Schuler, C. B., & Frame, J. (2022). Is Melatonin the “Next Vitamin D”?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients, 14(19), 3934. DOI: https://doi.org/10.3390/nu14193934

Mintziori, G., Duntas, L. H., Veneti, S., & Goulis, D. G. (2022). Metabolic, Oxidative and Psychological Stress as Mediators of the Effect of COVID-19 on Male Infertility: A Literature Review. International Journal of Environmental Research and Public Health, 19(9), 5277. DOI: https://doi.org/10.3390/ijerph19095277

Mirsaliyev, M., Israilova, V., Kashikova, K., Ismailov, Z., & Kozhamberdiyeva, D. (2022). Respiratory support for pneumonia patients in the COVID-19 pandemic. Journal of Pharmaceutical Negative Results, 13(3), 662-667. DOI: https://doi.org/10.47750/pnr.2022.13.03.098

Mohapatra, R. K., Pintilie, L., Kandi, V., Sarangi, A. K., Das, D., Sahu, R., & Perekhoda, L. (2020). The recent challenges of highly contagious COVID‐19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chemical biology & drug design, 96(5), 1187-1208. DOI: https://doi.org/10.1111/cbdd.13761

Mollica, V., Rizzo, A., & Massari, F. (2020). The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncology, 16(27), 2029-2033. DOI: https://doi.org/10.2217/fon-2020-0571

Nagappan, A., Kim, K. H., & Moon, Y. (2022). Caveolin-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in ovarian clear cell carcinoma. Cell biology and toxicology, 1–21. Advance online publication. https://doi.org/10.1007/s10565-022-09733-1 DOI: https://doi.org/10.1007/s10565-022-09733-1

Nayar, J. P., Heslin, A. J., Beck, D. B., Wakefield, M. R., & Fang, Y. (2022). COVID-19 and Erectile Dysfunction. Journal of Men's Health, 18(9), 190. DOI: https://doi.org/10.31083/j.jomh1809190

Ocanas, S. R. (2022). Epigenetic Regulation of Sexually Divergent Neuroinflammation with Brain Aging and Alzheimer’s Disease. Doctoral thesis submitted to the University of Oklahoma Health Sciences Center.

Olaniyan, O. T., Dare, A., Okotie, G. E., Adetunji, C. O., Ibitoye, B. O., Bamidele, O. J., & Eweoya, O. O. (2020). Testis and blood-testis barrier in Covid-19 infestation: role of angiotensin-converting enzyme 2 in male infertility. Journal of basic and clinical physiology and pharmacology, 31(6), 10.1515/jbcpp-2020-0156. https://doi.org/10.1515/jbcpp-2020-0156. DOI: https://doi.org/10.1515/jbcpp-2020-0156

Pallotti, F., Esteves, S. C., Faja, F., Buonacquisto, A., Conflitti, A. C., Hirsch, M. N., Lenzi, A., Paoli, D., & Lombardo, F. (2022). COVID-19 and its treatments: lights and shadows on testicular function. Endocrine, 1–9. Advance online publication. https://doi.org/10.1007/s12020-022-03221-6 DOI: https://doi.org/10.1007/s12020-022-03221-6

Palumbo, Angela, Julio Ávila, andPalumbo, A., Ávila, J., & Naftolin, F. (2016). The Ovarian Renin–Angiotensin System (OVRAS) A Major Factor in Ovarian Function and Disease. Reproductive Sciences, 23(12), 1644-1655. DOI: https://doi.org/10.1177/1933719116672588

Pan, A., Liu, L., Wang, C., Guo, H., Hao, X., Wang, Q., & Wu, T. (2020a). Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China. Jama, 323(19), 1915-1923. DOI: https://doi.org/10.1001/jama.2020.6130

Pan, F., Xiao, X., Guo, J., Song, Y., Li, H., Patel, D. P., & Hotaling, J. M. (2020b). No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertility and sterility, 113(6), 1135-1139. DOI: https://doi.org/10.1016/j.fertnstert.2020.04.024

Paoli, D., Pallotti, F., Turriziani, O., Mazzuti, L., Antonelli, G., Lenzi, A., & Lombardo, F. (2021). SARS‐CoV‐2 presence in seminal fluid: Myth or reality. Andrology, 9(1), 23-26. DOI: https://doi.org/10.1111/andr.12825

Parra-Medina, R., Herrera, S., & Mejía, J. (2021). Comments to: A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Modern Pathology, 34(8), 1608-1609. DOI: https://doi.org/10.1038/s41379-020-0631-z

Payne, K., Kenny, P., Scovell, J. M., Khodamoradi, K., & Ramasamy, R. (2020). Twenty-first century viral pandemics: a literature review of sexual transmission and fertility implications in men. Sexual medicine reviews, 8(4), 518-530. DOI: https://doi.org/10.1016/j.sxmr.2020.06.003

Perico, L., Benigni, A., & Remuzzi, G. (2020). Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron, 144(5), 213-221. DOI: https://doi.org/10.1159/000507305

Prochaska, E., Jang, M., & Burd, I. (2020). COVID‐19 in pregnancy: Placental and neonatal involvement. American journal of reproductive immunology, 84(5), e13306. DOI: https://doi.org/10.1111/aji.13306

Purvis, K., & Christiansen, E. (1993). Infection in the male reproductive tract. Impact, diagnosis and treatment in relation to male infertility. International Journal of Andrology, 16(1), 1-13. DOI: https://doi.org/10.1111/j.1365-2605.1993.tb01146.x

Qin, Shan, Y. J. Zhou, Ying Liu, Qin, S., Zhou, Y. J., Liu, Y., Shen, H. M., Li, X. D., Yan, X., & Tang, H. J. (2013). Expression and significance of ACE2-Ang-(1-7)-Mas axis in the endometrium of patients with polycystic ovary syndrome. Zhonghua yi xue za zhi, 93(25), 1989-1992.

Qiu, H., Wu, J., Hong, L., Luo, Y., Song, Q., & Chen, D. (2020). Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. The Lancet infectious diseases, 20(6), 689-696. DOI: https://doi.org/10.1016/S1473-3099(20)30198-5

Rabaan, A. A., Al-Ahmed, S. H., Garout, M. A., Al-Qaaneh, A. M., Sule, A. A., Tirupathi, R., & Dhama, K. (2021). Diverse immunological factors influencing pathogenesis in patients with COVID-19: a review on viral dissemination, immunotherapeutic options to counter cytokine storm and inflammatory responses. Pathogens, 10(5), 565. DOI: https://doi.org/10.3390/pathogens10050565

Rabaan, A. A., Al-Ahmed, S. H., Sah, R., Tiwari, R., Yatoo, M., Patel, S. K., & Leblebicioglu, H. (2020). SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Annals of Clinical Microbiology and Antimicrobials, 19(1), 1-37. DOI: https://doi.org/10.1186/s12941-020-00384-w

Rabiul Islam, M., Nasreen, W., Anjum, R., Shahriar, M., Roy, A., Dhama, K., & Ahmed Bhuiyan, M. (2022). Characteristics of the SARS-CoV-2 Omicron (B. 1.1. 529) Variant and Emerging Impact on Global Public Health. Clinical Pathology, 15, 2632010X221124908. DOI: https://doi.org/10.1177/2632010X221124908

Rambhatla, L., & Carpenter, M. K. (2007). U.S. Patent No. 7,256,042. Washington, DC: U.S. Patent and Trademark Office.

Reis, A. B., Araújo, F. C., Pereira, V. M., Dos Reis, A. M., Santos, R. A., & Reis, F. M. (2010). Angiotensin (1–7) and its receptor Mas are expressed in the human testis: implications for male infertility. Journal of molecular histology, 41(1), 75-80. DOI: https://doi.org/10.1007/s10735-010-9264-8

Renu, K., Subramaniam, M. D., Chakraborty, R., Myakala, H., Iyer, M., Bharathi, G., & Gopalakrishnan, A. V. (2020). The role of Interleukin-4 in COVID-19 associated male infertility–A hypothesis. Journal of reproductive immunology, 142, 103213. DOI: https://doi.org/10.1016/j.jri.2020.103213

Rihayat, T., Suryani, S., Ismi, A. S., Nurhanifa, N., & Riskina, S. (2019). Pla-zno nanocomposite paper for antimicrobial packaging application. Jurnal Polimesin, 17(2), 55-60. DOI: https://doi.org/10.30811/jstr.v17i2.1488

Riordan, J. F. (2003). Angiotensin-I-converting enzyme and its relatives. Genome biology, 4(8), 1-5. DOI: https://doi.org/10.1186/gb-2003-4-8-225

Rogers, T. F., Zhao, F., Huang, D., Beutler, N., Burns, A., He, W. T., & Burton, D. R. (2020). Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science, 369(6506), 956-963. DOI: https://doi.org/10.1126/science.abc7520

Saadedine, M., El Sabeh, M., Borahay, M. A., & Daoud, G. (2022). The influence of COVID-19 infection-associated immune response on the female reproductive system. Biology of reproduction, ioac187. Advance online publication. https://doi.org/ 10.1093/biolre/ioac187. DOI: https://doi.org/10.1093/biolre/ioac187

Sadeghi, N., Tavalaee, M., Shahverdi, A., Sengupta, P., Leisegang, K., Saleh, R., Agarwal, A., & Nasr Esfahani, M. H. (2022). Vulnerability of The Male Reproductive System to SARS-CoV-2 Invasion: Potential Role for The Endoplasmic Reticulum Chaperone Grp78/HSPA5/BiP. Cell journal, 24(8), 427–433. https://doi.org/10.22074/cellj.2022.8312

Salonia, A., Corona, G., Giwercman, A., Maggi, M., Minhas, S., Nappi, R. E., & Vignozzi, L. (2021). SARS‐CoV‐2, Testosterone and frailty in males (PROTEGGIMI): A multidimensional research project. Andrology, 9(1), 19-22. DOI: https://doi.org/10.1111/andr.12811

Schwartz, D. A. (2020). An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Archives of pathology & laboratory medicine, 144(7), 799-805. DOI: https://doi.org/10.5858/arpa.2020-0901-SA

Segars, J., Katler, Q., McQueen, D. B., Kotlyar, A., Glenn, T., Knight, Z., & Kawwass, J. F. (2020). Prior and novel coronaviruses, Coronavirus Disease 2019 (COVID-19), and human reproduction: what is known?. Fertility and sterility, 113(6), 1140-1149. DOI: https://doi.org/10.1016/j.fertnstert.2020.04.025

Sengupta, P., & Dutta, S. (2020). Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. The European Journal of Contraception & Reproductive Health Care, 25(5), 405-406. DOI: https://doi.org/10.1080/13625187.2020.1787376

Shams, T., Alhashemi, H., Madkhali, A., Noorelahi, A., Allarakia, S., Faden, Y., & Alotaibi, M. (2022). Comparing pregnancy outcomes between symptomatic and asymptomatic COVID-19 positive unvaccinated women: Multicenter study in Saudi Arabia. Journal of Infection and Public Health, 15(8), 845-852. DOI: https://doi.org/10.1016/j.jiph.2022.06.002

Shen, Q., Li, J., Zhang, Z., Guo, S., Wang, Q., An, X., & Chang, H. (2022). COVID-19: systemic pathology and its implications for therapy. International Journal of Biological Sciences, 18(1), 386. DOI: https://doi.org/10.7150/ijbs.65911

Shen, Q., Xiao, X., Aierken, A., Yue, W., Wu, X., Liao, M., & Hua, J. (2020). The ACE2 expression in Sertoli cells and germ cells may cause male reproductive disorder after SARS‐CoV‐2 infection. Journal of cellular and molecular medicine, 24(16), 9472-9477. DOI: https://doi.org/10.1111/jcmm.15541

Shoemaker, R., Tannock, L. R., Su, W., Gong, M., Gurley, S. B., Thatcher, S. E., & Cassis, L. A. (2019). Adipocyte deficiency of ACE2 increases systolic blood pressures of obese female C57BL/6 mice. Biology of sex differences, 10(1), 1-12. DOI: https://doi.org/10.1186/s13293-019-0260-8

Singh, M., Bansal, V., & Feschotte, C. (2020). A single-cell RNA expression map of human coronavirus entry factors. Cell reports, 32(12), 108175. DOI: https://doi.org/10.1016/j.celrep.2020.108175

Singh, Y., Gupta, G., Sharma, R., Matta, Y., Mishra, A., Pinto, T. D. J. A., & Dua, K. (2018). Embarking effect of ACE2-angiotensin 1–7/mas receptor Axis in benign prostate hyperplasia. Critical Reviews™ in Eukaryotic Gene Expression, 28(2). DOI: https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018021364

Smith, R., Kaune, H., Parodi, D., Madariaga, M., Ríos, R., Morales, I., & Castro, A. (2006). Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Human Reproduction, 21(4), 986-993. DOI: https://doi.org/10.1093/humrep/dei429

Song, H., Seddighzadeh, B., Cooperberg, M. R., & Huang, F. W. (2020). Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. European urology, 78(2), 296. DOI: https://doi.org/10.1016/j.eururo.2020.04.065

Sorour, K., Sarhan, H., & El-Menshawy, H. (2020). ACE-2 in the highlight of COVID-19, A proposed pathology and potential correlations. https://doi.org/10.31730/osf.io/e7bk4 DOI: https://doi.org/10.31730/osf.io/e7bk4

Stanley, K. E., Thomas, E., Leaver, M., & Wells, D. (2020). Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertility and sterility, 114(1), 33-43. DOI: https://doi.org/10.1016/j.fertnstert.2020.05.001

Stephens, L. E., Sutherland, A. E., Klimanskaya, I. V., Andrieux, A., Meneses, J., Pedersen, R. A., & Damsky, C. H. (1995). Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes & development, 9(15), 1883-1895. DOI: https://doi.org/10.1101/gad.9.15.1883

Sufriyana, H., Salim, H. M., Muhammad, A. R., Wu, Y. W., & Su, E. C. Y. (2022). Blood biomarkers representing maternal-fetal interface tissues used to predict early-and late-onset preeclampsia but not COVID-19 infection. Computational and structural biotechnology journal, 20, 4206-4224. DOI: https://doi.org/10.1016/j.csbj.2022.08.011

Sultan, F., Ahuja, K., & Motiani, R. K. (2022). Potential of targeting host cell calcium dynamics to curtail SARS-CoV-2 infection and COVID-19 pathogenesis. Cell Calcium, 106, 102637. DOI: https://doi.org/10.1016/j.ceca.2022.102637

Sungnak, W., Huang, N., Bécavin, C., Berg, M., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature medicine, 26(5), 681-687. DOI: https://doi.org/10.1038/s41591-020-0868-6

Tanaka, J., Senpuku, H., Ogawa, M., Yasuhara, R., et al. (2022). Human induced pluripotent stem cell-derived salivary gland organoids model SARS-CoV-2 infection and replication. Nature cell biology, 10.1038/s41556-022-01007-6. Advance online publication. https://doi.org/10.1038/s41556-022-01007-6. DOI: https://doi.org/10.1038/s41556-022-01007-6

Tang, W., Chang, S. B., & Hemler, M. E. (2004). Links between CD147 function, glycosylation, and caveolin-1. Molecular biology of the cell, 15(9), 4043-4050. DOI: https://doi.org/10.1091/mbc.e04-05-0402

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363-374. DOI: https://doi.org/10.1038/s41577-020-0311-8

Temena, M. A., & Acar, A. (2022). Increased TRIM31 gene expression is positively correlated with SARS-CoV-2 associated genes TMPRSS2 and TMPRSS4 in gastrointestinal cancers. Scientific reports, 12(1), 1-13. DOI: https://doi.org/10.1038/s41598-022-15911-2

Thakur, N., Das, S., Kumar, S., Maurya, V. K., et al. (2022). Tracing the origin of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A systematic review and narrative synthesis. Journal of medical virology, 94(12), 5766–5779. https://doi.org/10.1002/jmv.28060. DOI: https://doi.org/10.1002/jmv.28060

Thomas, P., Alexander, P. E., Ahmed, U., Elderhorst, E., El-Khechen, H., Mammen, M. J., & Alhazzani, W. (2022). Vertical transmission risk of SARS-CoV-2 infection in the third trimester: a systematic scoping review. The Journal of Maternal-Fetal & Neonatal Medicine, 35(12), 2387-2394. DOI: https://doi.org/10.1080/14767058.2020.1786055

Tran, A., Fernando, S. M., Rochwerg, B., Barbaro, R. P., Hodgson, C. L., Munshi, L., & Brodie, D. (2022). Prognostic factors associated with mortality among patients receiving venovenous extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. The Lancet. Respiratory Medicine, S2213-2600(22)00296-X. DOI: 10.1016/s2213-2600(22)00296-x.. DOI: https://doi.org/10.1016/S2213-2600(22)00296-X

Tse, L. V., Meganck, R. M., Graham, R. L., & Baric, R. S. (2020). The current and future state of vaccines, antivirals and gene therapies against emerging coronaviruses. Frontiers in microbiology, 11, 658. DOI: https://doi.org/10.3389/fmicb.2020.00658

Tufvesson, K., Catalini, L., & Fedder, J. (2022). Semen parameters after SARS‐CoV‐2 infection: A literature review. Health Science Reports, 5(5), e745. DOI: https://doi.org/10.1002/hsr2.745

Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., & Subramaniam, M. D. (2020). COVID-19: A promising cure for the global panic. Science of the total environment, 725, 138277. DOI: https://doi.org/10.1016/j.scitotenv.2020.138277

Verma, S., Saksena, S., & Sadri-Ardekani, H. (2020). ACE2 receptor expression in testes: implications in coronavirus disease 2019 pathogenesis. Biology of Reproduction, 103(3), 449-451. DOI: https://doi.org/10.1093/biolre/ioaa080

Villalba, M., Fredericksen, F., Otth, C., & Olavarría, V. (2016). Transcriptomic analysis of responses to cytopathic bovine viral diarrhea virus-1 (BVDV-1) infection in MDBK cells. Molecular immunology, 71, 192-202. DOI: https://doi.org/10.1016/j.molimm.2016.01.009

Vishvkarma, R., & Rajender, S. (2020). Could SARS‐CoV‐2 affect male fertility?. Andrologia, 52(9), e13712. DOI: https://doi.org/10.1111/and.13712

Williams, J., Namazova-Baranova, L., Weber, M., Vural, M., Mestrovic, J., Carrasco-Sanz, A., & Pettoello-Mantovani, M. (2020). The importance of continuing breastfeeding during coronavirus disease-2019: in support of the World Health Organization statement on breastfeeding during the pandemic. The Journal of pediatrics, 223, 234-236. DOI: https://doi.org/10.1016/j.jpeds.2020.05.009

Wu, X., Zhou, L., Shi, J., Cheng, C. Y., & Sun, F. (2022). Multiomics analysis of male infertility†. Biology of reproduction, 107(1), 118–134. https://doi.org/10.1093/biolre/ioac109 DOI: https://doi.org/10.1093/biolre/ioac109

Xue, W., Tang, Q., & Yang, L (2022). The combination of ginger and zinc supplement could improve lead‐induced reproductive dysfunction by inhibiting apoptosis mediated by oxidative damage and inflammation. Andrologia, e14577. DOI: https://doi.org/10.1111/and.14577

Yan, T., Xiao, R., & Lin, G. (2020). Angiotensin‐converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS‐CoV‐2: A double‐edged sword?. The FASEB Journal, 34(5), 6017-6026. DOI: https://doi.org/10.1096/fj.202000782

Younis, J. S., Abassi, Z., & Skorecki, K. (2020). Is there an impact of the COVID-19 pandemic on male fertility? The ACE2 connection. American Journal of Physiology-Endocrinology and Metabolism, 318(6): E878-E880 DOI: https://doi.org/10.1152/ajpendo.00183.2020

Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020b). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine, 46(4), 586-590. DOI: https://doi.org/10.1007/s00134-020-05985-9

Zhang, S., Wang, X., Zhang, H., Xu, A., Fei, G., Jiang, X., & Li, Y. (2020a). The absence of coronavirus in expressed prostatic

secretion in COVID-19 patients in Wuhan city. Reproductive Toxicology, 96, 90-94.

Zhang, Y., Geng, X., Tan, Y., Li, Q., Xu, C., Xu, J., & Wang, H. (2020c). New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine & pharmacotherapy, 127, 110195. DOI: https://doi.org/10.1016/j.biopha.2020.110195

Zheng, K. I., Feng, G., Liu, W. Y., Targher, G., Byrne, C. D., & Zheng, M. H. (2021). Extrapulmonary complications of COVID‐19: A multisystem disease?. Journal of Medical Virology, 93(1), 323-335. DOI: https://doi.org/10.1002/jmv.26294

Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., & Wang, J. (2020). Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell host & microbe, 27(6), 883-890. DOI: https://doi.org/10.1016/j.chom.2020.04.017

Downloads

Published

2022-10-31

How to Cite

G, G., A S, V., & Dhama, K. (2022). Angiotensin Converting Enzyme 2 (ACE2) - A macromolecule and its impact on human reproduction during COVID-19 pandemic. Journal of Experimental Biology and Agricultural Sciences, 10(5), 960–977. https://doi.org/10.18006/2022.10(5).960.977

Issue

Section

REVIEW ARTICLES