Genetic improvement for drought tolerance in rice using mutation induction

Authors

  • Mohamed Ali Othman Plant Researches Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. box 13759- Atomic Energy Post office, Inshas- Egypt https://orcid.org/0000-0002-3194-5731
  • Abdel-Shafy Ibrahim Ragab Plant Researches Department, Nuclear Research Center, Egyptian Atomic Energy Authority, P.O. box 13759- Atomic Energy Post office, Inshas- Egypt
  • Alia Ahmed Mohamed Elseaudy Department of Genetics, Faculty of Agriculture, Ain shams University, Shoubra El Kheima, Cairo, Egypt
  • Lamiaa Mustafa Kamal Sayed Department of Genetics, Faculty of Agriculture, Ain shams University, Shoubra El Kheima, Cairo, Egypt

DOI:

https://doi.org/10.18006/2022.10(5).1188.1203

Keywords:

Rice, Drought stress, DTI, Agronomic traits, SCoT-Marker

Abstract

Thirty-three percent of the world's farmland is subject to drought, making it the most difficult abiotic stress on rice production. Ten different M4-rice mutants were tested, along with three check varieties (Giza 179, Sakha 107, and IET1444 - International check variety for drought stress), to see how well they fared in drought conditions. These genotypes were tested in well-watered (WW: irrigation every 4 days), water-stressed (WS1: irrigation every 8 days), and severe water-stressed (WS2: irrigation every 12 days) conditions across generations M5 to M8. Drought stress was measured regarding its effect on agronomic traits and drought tolerance indices. Of the ten tested mutants, seven high-tillering mutants had higher yields under normal and stress conditions than the check varieties did in the field. The STI, MP, YI, and GMP indices show that, compared to IET444 (DT check variety), the mutant EN25 performed best under drought stress, followed by the mutant EN27. According to the data analysis of SCoT markers, only 34 of the 46 primers used amplified 377 bands (alleles) across 53 different markers. There was a wide range of genetic similarities among mutants, parents, and the check varieties, and it ranged from 17% to 78%. These seven mutants shared 13 common bands with the most drought-tolerant check variety (IET444) using SCoT markers, which indicates that these mutants carried some drought-tolerant genes. Hence, these mutants hold great potential for use in drought-stressed rice breeding programs.

References

Abdelghany, A. M., Abouzied, H. M. & Badran, M. S. (2016). Evaluation of some Egyptian wheat cultivars under water stress condition in the North Western Coast of Egypt. Journal of Agricultural and Environmental Sciences, Damietta University, Egypt, 15(1),63-84.

Abdi, N., Darvishzadeh, R. & Maleki, H. (2013). Effective selection criteria for screening drought tolerant recombinant inbred lines of sunflower. Genetika, 45,153-166. DOI: https://doi.org/10.2298/GENSR1301153A

Abdul Haris, H., Abdullah, Bakhtiar, Subaedah, Aminah, & Jusoff, K. (2013). Gamma ray radiation mutant rice on local aged dwarf. Middle East Journal of Scientific Research, 15(8),1160–1164.

Aboulila, A. A. & Mansour, M. (2017). Efficiency of triple-SCoT primer in characterization of genetic diversity and genotype-specific markers against SSR fingerprint in some Egyptian barley genotypes. American Journal Molecular Biology, 7,123-137. DOI: https://doi.org/10.4236/ajmb.2017.73010

Afiah S. A., Elgammaal, A. A. & EL-Hosary, A. A. (2019). Selecting diverse bread wheat genotypes under saline stress conditions using ISSR marker and tolerance indices. Egypian Journal of Plant Breeding, 23 (1),77 –92.

Afify, M. A., El-Hosary, A. A., Sobieh, S. E. S., Hmam, G. Y., Boulot, O. A., & Alazab K. F. (2022). Evaluation of some bread wheat mutants for drought tolerance indices under normal and drought conditions. Annals of Agriculture Science, Moshtohor, 60(1), 39-52. DOI: https://doi.org/10.21608/assjm.2022.223101

Ahmadikhah, A., & Marufinia, A. (2016). Effect of Reduced Plant Height on Drought Tolerance in Rice. 3 Biotechnology, 6, 1–9. DOI: https://doi.org/10.1007/s13205-016-0542-3

Ali, M. B., & El-Sadek, A. N. (2016). Evaluation of drought tolerance indices for wheat (Triticum aestivum L) under irrigated and rainfed conditions. Com in Biometry & Crop Science, 11(1),77-89.

Babaei, A., Nematzadeh G.A., & H. Hashemi (2011). An evaluation of genetic differentiation in rice mutants using semi-random markers and morphological characteristics. Australian Journal of Crop Science, 5(13), 1715-1722.

Babaei, A., Nematzadeh, G. A., Avagyan, V. & Hashemi, H. (2010). Radio sensitivity studies of morpho-physiological characteristics in some Iranian rice varieties (Oryza sativa L.) in M1 generation. African Journal of Agriculture Research, 5(16),2124- 2130.

Bennani, S., Nsarellah, N., Jlibene M., Tadesse, W. et al. (2017). Efficiency of drought indices under different severities for bread wheat selection. Australian Journal of Crop Science, 11(4),395-405. DOI: https://doi.org/10.21475/ajcs.17.11.04.pne272

Bouslama, M., & Schapaugh, W.T. (1984). Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933-937. DOI: https://doi.org/10.2135/cropsci1984.0011183X002400050026x

Chakravarthi, B. K. & Naravaneni, R. (2006). SSR marker-based DNA fingerprinting and diversity study in rice (Oryza sativa. L). African Journal of Biotechnology, 5(9),684–688.

Cha-um, S., Yooyongwech, S. & Supaibulwatana, K. (2010) Water deficit stress in the reproductive stage of four Indica rice (Oryza sativa L.) genotypes. Pakistani Journalof Botany, 42(5),3387–3398.

Collard, B. C. Y., & Mackill, D. J. (2009). Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants. Plant Molecular Biology Report, 27, 86–93. DOI: https://doi.org/10.1007/s11105-008-0060-5

Davatgar, N., Neishabouria, M.R., Sepaskhahb, A.R., & Soltanic, A. (2009). Physiological and morphological responses of rice (Oryza sativa L.) to varying water stress management strategies. International Journal of Plant Production, 4, 19-32.

Dellaporta, S. L., Wood, J. & Hicks, J. B. (1983). A Plant DNA Minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19-21. DOI: https://doi.org/10.1007/BF02712670

Dora, S. A., Mansour, M., Aboulila, A. A., & Abdelwahab, E. (2017). Genetic diversity and relationships among some barley genotypes for net blotch disease resistance using RAPD, SCoT and SSR markers. Egyptian Journal of Genetics and Cytology, 46 (1), 139-165. DOI: https://doi.org/10.21608/ejgc.2018.9510

Eid, M. H. & Sabry, S. (2019). Assessment of variability for drought tolerance indices in some wheat (Triticum aestivum L.) genotypes. Egyptian Journal of Agronomy, 41 (2),79 – 91. DOI: https://doi.org/10.21608/agro.2019.10401.1153

El-Hosary, A. A., El-Gedwy E. M. & Abdel-Salam, M. A. (2019). Utilization of ISSR marker and tolerance indices for selecting adapted wheat genotypes under water stress. Bioscience Research, 16 (2),1611-1625.

Emam, M.A., Abd EL-Mageed, A.M., Niedbała, G., Sabrey, S.A., et al. (2022). Characterization and Agronomic Evaluation of Drought Tolerance in Ten Egyptian Wheat (Triticum aestivum L.) Cultivars. Agronomy, 12, 1217. https:// doi.org/10.3390/agronomy12051217. DOI: https://doi.org/10.3390/agronomy12051217

Etminan, A., Pour-Aboughadareh, A., Mohammadi, R., Ahmadi-Rad, et al. (2016). Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnology and Biotechnological Equipment, 30(6),1075-1081. DOI: https://doi.org/10.1080/13102818.2016.1228478

FAO. (2020): Food Agriculture Organization. – http://www.fao.org/index_en.htm.

Farshadfar, E. & J. Javadinia (2011). Evaluation of Chickpea (Cicer arietinum L) genotypes for drought tolerance. Seed & Plant Improvement Journal, 27(4),517-537.

Farshadfar, E., Mohammad, M., & Seyed, M. (2013). Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International journal of Advanced Biological and Biomedical Research, 1(2),143-158.

Fernandez, G. C. J. (1992). Effective selection criteria for assessing stress tolerance. (Ed. CG Kuo). In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Publication, Taiwan, Taiwan, pp. 257-270.

Fischer R.A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29, 897-912. DOI: https://doi.org/10.1071/AR9780897

Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., et al. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531. DOI: https://doi.org/10.4141/P96-130

Gorji, A. M., Poczai, P., Polgar, Z. & Taller, J. (2011). Efficiency of arbitrarily amplified dominant markers (SCoT ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. American Journal of Potato Research, 88(3),226-237. http://dx.doi.org/10.1007/ s12230-011-9187-2. DOI: https://doi.org/10.1007/s12230-011-9187-2

Han, G. H., Su, Q., Wang, W. S., Jia, Z. G. et al. (2011). Establishment and application of SCoT molecular marker system for citrus. Acta HorticulturaeSinica, 38(7),1243-1250. http://dx.doi.org/10.19103/AS.2106.0003.08. DOI: https://doi.org/10.19103/AS.2106.0003.08

Hussain, M., Niaz, U., Bilal, M., & Liaqat, N. (2018) Phenotypic Response of Rice Genotypes Under Submergence Conditions at Seedling Stage, Current Investigations in Agriculture and Current Research, 5 (4), 722-726. 10.32474/CIACR.2018.05.000220 DOI: https://doi.org/10.32474/CIACR.2018.05.000220

Hussain, S., Hussain, S., Aslam, Z., Rafiq, M., et al. (2021). Impact of Different Water Management Regimes on the Growth, Productivity, and Resource Use Efficiency of Dry Direct Seeded Rice in Central Punjab Pakistan. Agronomy, 11(6), 1151. DOI: https://doi.org/10.3390/agronomy11061151

IAEA-FAO (2020). MutantVariety Database. Retrieve from: https://mvd.iaea.org/, consulted: 20 July 2020.

Igwe, D. O., Afiukwa, C. A., Ubi, B. E., Ogbu, K. I., et al. (2017). Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genetics, 18 (1),98. DOI: https://doi.org/10.1186/s12863-017-0567-6

Karimizadeh, R., & Mohammadi, M. (2011). Association of canopy temperature depression with yield of durum wheat genotypes under supplementary irrigated and rainfed conditions. Australian Journal of Crop Science, 5,138-146.

Kumar, S., Sehgal, S. K., Kumar, U., Prasad, P. V., et al. (2012). Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica, 186, 265–276. DOI: https://doi.org/10.1007/s10681-012-0675-3

Lafitte, H. R, Yongsheng, G., Yan, S. & Li, Z. K. (2007). Whole plant responses, key processes, and adaptation to drought stress: The case of rice. Journal of Experimental Botany, 58,169-175. DOI: https://doi.org/10.1093/jxb/erl101

Moghaddam, A., & Hadizadeh, M. H. (2002). Response of corn (Zea mays L.) hybrids and their parental lines to drought using different stress tolerance indices. Seed Plant, 18, 255-272.

Moussa, H. R. (2011). Low dose of gamma irradiation enhanced drought tolerance in soybean. Bulgarian Journal of Agricultural Science, 17 (1),63–72. DOI: https://doi.org/10.1556/AAgr.59.2011.1.1

Mursalova, J., Akparov, Z., Ojaghi, J., Eldaro, M., et al. (2015). Evaluation of drought tolerance of winter bread wheat genotypes under drip irrigation and rainfed conditions. Turkish Journal of Agriculture and Forestry, 39, 1-8. DOI: https://doi.org/10.3906/tar-1407-152

Oladosua, Y., Rafii, M.Y., Abdullah N., & Hussind G., et al. (2016). Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment, 30(1),1-16. DOI: 10.1080/13102818.2015.1087333 DOI: https://doi.org/10.1080/13102818.2015.1087333

Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., et al. (2006). Use of drought respose index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Research, 99, 48-58. DOI: https://doi.org/10.1016/j.fcr.2006.03.003

Pandey, V., & Shukla, A. (2015). Acclimation and tolerance strategies of rice under drought stress. Rice Science, 22(4),147–161. DOI: https://doi.org/10.1016/j.rsci.2015.04.001

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., et al. (2002). Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands. I. Grain yield and yield components. Field Crops Research, 73,153-168. DOI: https://doi.org/10.1016/S0378-4290(01)00187-3

Pantuwan, G., Fukai, S., Copper, M., Rajatasereekul S., et al. (2000). Field screening for drought resistance. In Proceedings of international workshop “increased lowland rice production in the Mekong region”, Australian Centre for International Agricultural Research, 101, 69-77.

Parchin, R., Abdollah, N., & Farshadfar, E. (2013). Assessment of drought tolerance in genotypes of wheat by multivariate analysis. World Applied Sciences Journal, 22 (4), 594-600.

Patidar, A., Sharma, R., Kotu, G. K., Kumar, A., et al. (2022). ScoT marker assisted evaluation of genetic diversity in new plant type (NPT) lines of rice. Bangladesh Journal of Botany, 51(2), 335-341. DOI: https://doi.org/10.3329/bjb.v51i2.60431

Quampah, A., Wang, R. M., Shamsi, I. H., Jilani, G., et al. (2011). Improving water productivity by potassium application in various rice genotypes. International Journal of Agriculture & Biology, 13(1),9-17.

Raman, A., Verulkar, S., Mandal, N. P., Varrier, M., et al. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 5(31),1-12. DOI: https://doi.org/10.1186/1939-8433-5-31

Rasheed, A., Hassan M.U., Aamer M., Batool M., et al. (2020). A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4),1756-1788. DOI: https://doi.org/10.15835/nbha48412128

Rollins, J. A, Habte, E., Templer, S. E., Colby, T., et al. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). Journal of Experimental Botany, 64(11), 3201–3212. DOI: https://doi.org/10.1093/jxb/ert158

Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21, 943-946. DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Sarkarung, S., Pantuwan, G., Pushpavesa, S., &Tanupan, P. (1997). Germplasm development for rainfed lowland ecosystem breeding strategies for rice in drought –prone environments. In proceeding of international workshop, pp. 43-49.

Shaban, A.S., Arab, S., Basuoni, M.M., Abozahra, M.S., et al. (2022). SCoT, ISSR, and SDS-PAGE Investigation of Genetic Diversity in Several Egyptian Wheat Genotypes under Normal and Drought Conditions. International Journal of Agronomy, 7024028. https://doi.org/10.1155/2022/7024028. DOI: https://doi.org/10.1155/2022/7024028

Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006) Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, 222-229. DOI: https://doi.org/10.1016/j.fcr.2006.02.001

Terra T., De Barros L. T., Borém A., & Rangel P. (2013) Tolerância de linhagens de arroz de terras altas à seca. Pesquisa Agropecuária Tropical, 43(2):201-208. DOI: https://doi.org/10.1590/S1983-40632013000200013

Xiong, F., Zhong, R., Han, Z., Jiang, J., et al. (2011). Start codon-targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports, 38, 3487–3494. DOI: https://doi.org/10.1007/s11033-010-0459-6

Yang, J., Zhang, J., Wang, Z., & Zhu, Q. (2001). Wang, W. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling. Plant Physiology, 127, 315–323. DOI: https://doi.org/10.1104/pp.127.1.315

Yeo, A. R. (1999). Predicting the interaction between the effects of salinity and climate change on crop plants. Scientia Horticulturae, 78, 159-174. DOI: https://doi.org/10.1016/S0304-4238(98)00193-9

Zubaer, M.A., Chowdhury, A., Islam, M.Z., Ahmed, T., et al. (2007). Effects of water stress on growth and yield attributes of Aman rice genotypes. International Journal of Sustainable Crop Production, 2(6), 25-30.

Downloads

Published

2022-10-31

How to Cite

Othman, M. A., Ragab, A.-S. I., Elseaudy, A. A. M., & Sayed, L. M. K. (2022). Genetic improvement for drought tolerance in rice using mutation induction. Journal of Experimental Biology and Agricultural Sciences, 10(5), 1188–1203. https://doi.org/10.18006/2022.10(5).1188.1203

Issue

Section

RESEARCH ARTICLES

Categories