Potential of Zinc Oxide Nanoparticles as an Anticancer Agent: A Review
DOI:
https://doi.org/10.18006/2022.10(3).494.501Keywords:
Cancer, Nanotechnology, Drug delivery, Green synthesis, Zinc oxide nanoparticlesAbstract
According to reports, one of the leading causes of mortality is cancer. Over the years, numerous approaches have been devised to lessen chronic pain and death as well as to elevate the quality of life. However, a scarcity persists in the effectiveness of cancer treatments. Early cancer identification and medication delivery with excellent specificity to reduce toxicities are two critical elements in ensuring effective cancer treatment. As a result of severe systemic toxicities and issues with current cancer diagnostic and treatment procedures, alternative nanotechnology-based techniques are being employed to improve detection and minimize disease severity. Nanotechnology has shown promising breakthroughs in cancer therapy by eliminating tumours with minimal damage to surrounding healthy cells. Since zinc is one of the necessary trace elements found in large amounts in human body tissues, zinc oxide nanoparticles (ZnO NPs) are said to be the most cost-effective and have the least hazardous characteristics of all metal oxide nanoparticles. In addition, ZnO NPs have several biological uses, notably in the field of drug administration. In this review, we tried to explore the advantage of ZnO NPs in the biomedical field, particularly in the treatment of cancer which can help to facilitate future research progress.
References
Aalami, A.H., Mesgari, M., & Sahebkar, A. (2020). Synthesis and characterization of green zinc oxide nanoparticles with antiproliferative effects through apoptosis induction and microRNA modulation in breast cancer cells. Bioinorganic Chemistry and Applications, 3, 1-17. DOI: https://doi.org/10.1155/2020/8817110
Abdelmigid, H. M., Hussien, N. A., Alyamani, A. A., Morsi, M. M., et al. (2022). Green synthesis of zinc oxide nanoparticles using pomegranate fruit peel and solid coffee grounds vs. chemical method of synthesis, with their biocompatibility and antibacterial properties investigation. Molecules, 27(4), 1236. DOI: https://doi.org/10.3390/molecules27041236
Alarifi, S., Ali, D., Alkahtani, S., Verma, A., et al. (2013). Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. International Journal of Nanomedicine, 8, 983-993. DOI: https://doi.org/10.2147/IJN.S42028
Ancona, A., Dumontel, B., Garino, N., Demarco, B., et al. (2018). Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials, 8(3), 143. DOI: https://doi.org/10.3390/nano8030143
Anjum, S., Hashim, M., Malik, S.A., Khan, M., et al. (2021). Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 13(18), 4570. DOI: https://doi.org/10.3390/cancers13184570
Anvarinezhad, M., Javadi, A., & Jafarizadeh-Malmiri, H. (2020). Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles- hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process. Green Processing and Synthesis, 9, 375-385. DOI: https://doi.org/10.1515/gps-2020-0040
Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., et al. (2017). Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64-83. DOI: https://doi.org/10.1016/j.imlet.2017.07.015
Bai Aswathanarayan, J., Rai Vittal, R., & Muddegowda, U. (2018). Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1444-1451. DOI: https://doi.org/10.1080/21691401.2017.1373655
Bai, D.P., Zhang, X.F., Zhang, G.L., Huang, Y.F., et al. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. International Journal of Nanomedicine, 2, 6521. DOI: https://doi.org/10.2147/IJN.S140071
Bala, N., Saha, S., Maiti, M., Sarkar, M., et al. (2016). Riboflavin conjugated temperature variant ZnO nanoparticles with potential medicinal application in jaundice. RSC Advances,6, 71188-71198. DOI: https://doi.org/10.1039/C6RA15182E
Barani, M., Bilal, M., Sabir, F., Rahdar, A., et al (2021). Nanotechnology in ovarian cancer: diagnosis and treatment. Life Sciences, 266(118914). DOI: https://doi.org/10.1016/j.lfs.2020.118914
Barua, S., & Mitragotri, S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 9, 223-243. DOI: https://doi.org/10.1016/j.nantod.2014.04.008
Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 25, 112. DOI: https://doi.org/10.3390/molecules25010112
Bertrand, N., Wu, J., Xu, X., Kamaly, N., & Farokhzad, O.C. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 66, 2-5. DOI: https://doi.org/10.1016/j.addr.2013.11.009
Beyene, A.M., Moniruzzaman, M., Karthikeyan, A., & Min, T. (2021). Curcumin nanoformulations with metal oxide nanomaterials for biomedical applications. Nanomaterials, 11, 460. DOI: https://doi.org/10.3390/nano11020460
Bisht, G., & Rayamajhi, S. (2016). ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine, 3, 9. https://doi.org/10.5772/63437 DOI: https://doi.org/10.5772/63437
Chen, Y., Zhu, X., Zhang, X., Liu, B., & Huang, L. (2010). Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Molecular Therapy, 18(9), 1650-1656. DOI: https://doi.org/10.1038/mt.2010.136
Chung, I.M., Rahuman, A.A., Marimuthu, S., Kirthi, A.V., et al. (2015). An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using Ecliptaprostrata on human liver carcinoma cells. Nanomaterials (Basel), 5, 1317-1330. DOI: https://doi.org/10.3390/nano5031317
Condello, M., De Berardis, B., Ammendolia, M.G., Barone, F., et al. (2016). ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicology in Vitro, 35, 169-179. DOI: https://doi.org/10.1016/j.tiv.2016.06.005
Gour, A., & Jain, N.K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47, 844-851. DOI: https://doi.org/10.1080/21691401.2019.1577878
Greish, K. (2012). Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: Are we there yet? Drug Discovery Today:Technologies, 9(2), 161-166. DOI: https://doi.org/10.1016/j.ddtec.2011.11.010
Gudikandula, K., Vadapally, P., & Charya, M.S. (2017). Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano, 2, 64-78. DOI: https://doi.org/10.1016/j.onano.2017.07.002
Guo, D., Wu, C., Jiang, H., Li, Q., et al. (2008). Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 93, 119-126. DOI: https://doi.org/10.1016/j.jphotobiol.2008.07.009
Hackenberg, S., Scherzed, A., Harnisch, W., Froelich, K., et al. (2012). Antitumor activity of photo-stimulated zinc oxide nanoparticles combined with paclitaxel or cisplatin in HNSCC cell lines. Journal of Photochemistry and Photobiology B: Biology, 114, 87-93. DOI: https://doi.org/10.1016/j.jphotobiol.2012.05.014
Hamrayev, H., Shameli, K., & Yusefi, M. (2020). Preparation of zinc oxide nanoparticles and its cancer treatment effects: A review paper. Journal of Advanced Research in Micro and Nano Engineering, 2, 1-11.
Jeevanandam, J., Barhoum, A., Chan, Y.S, Dufresne, A., & Danquah, M.K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074. DOI: https://doi.org/10.3762/bjnano.9.98
Jia, S., Zhang, R., Li, Z., & Li, J. (2017). Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget, 8(33), 55632. DOI: https://doi.org/10.18632/oncotarget.17184
Jiang, J., Pi, J., & Cai, J. (2018). The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorganic Chemistry and Applications, 2018, 1062562. https://doi.org/ 10.1155/2018/1062562. DOI: https://doi.org/10.1155/2018/1062562
Kalpana, V. N., & Devi Rajeswari, V. (2018). A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorganic chemistry and applications, 2018, 3569758. https://doi.org/10.1155/2018/3569758. DOI: https://doi.org/10.1155/2018/3569758
Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., et al. (2019). Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C, 98, 1252-1276. DOI: https://doi.org/10.1016/j.msec.2019.01.066
Kang, T., Guan, R., Chen, X., Song, Y., et al. (2013). In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Research Letters, 8(1), 496. DOI: https://doi.org/10.1186/1556-276X-8-496
Keerthana, S., & Kumar, A. (2020). Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Critical Reviews in Toxicology, 50, 47-71. DOI: https://doi.org/10.1080/10408444.2020.1726282
Kim, S., Lee, S.Y., & Cho, H.J. (2017). Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials, 7, 354. DOI: https://doi.org/10.3390/nano7110354
Kolhe, S., & Parikh, K. (2012). Application of nanotechnology in cancer: A review. International Journal of Bioinformatics Research and Applications, 8(1-2), 112-125. DOI: https://doi.org/10.1504/IJBRA.2012.045954
Liu, J., Kang, Y., Yin, S., Song, B., et al. (2017). Zinc oxide nanoparticles induce toxic responses in human neuroblastoma SHSY5Y cells in a size-dependent manner. International Journal of Nanomedicine, 12, 8085. DOI: https://doi.org/10.2147/IJN.S149070
Maslanka Figueroa, S., Fleischmann, D., & Goepferich, A. (2021). Biomedical nanoparticle design: What we can learn from viruses. Journal of Controlled Release, 329, 552-569. DOI: https://doi.org/10.1016/j.jconrel.2020.09.045
Mishra, P.K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 22, 1825-1834. DOI: https://doi.org/10.1016/j.drudis.2017.08.006
Mocchegiani, E., Romeo, J., Malavolta, M., Costarelli, L., et al. (2013). Zinc: dietary intake and impact of supplementation on immune function in elderly. Age, 35(3), 839-860. DOI: https://doi.org/10.1007/s11357-011-9377-3
Moghaddam, A.B., Moniri, M., Azizi, S., Rahim, R.A., et al. (2017). Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes, 8(10), 281. DOI: https://doi.org/10.3390/genes8100281
Muhammad, F., Guo, M., Qi, W., Sun, F., et al. (2011). pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. Journal of the American Chemical Society, 133(23), 8778-8781. DOI: https://doi.org/10.1021/ja200328s
Namvar, F., Azizi, S., Rahman, H.S., Mohamad, R., et al. (2016). Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites. OncoTargets and Therapy, 9, 4549-4559. DOI: https://doi.org/10.2147/OTT.S95962
Othman, B.A., Greenwood, C., Abuelela, A.F., Bharath, A.A., et al. (2016) Correlative light-electron microscopy shows RGD-targeted ZnO nanoparticles dissolve in the intracellular environment of triple negative breast cancer cells and cause apoptosis with intratumor heterogeneity. Advanced Healthcare Materials, 5(11), 1310-1325. DOI: https://doi.org/10.1002/adhm.201501012
Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., et al. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102(16), 6799-6814. DOI: https://doi.org/10.1007/s00253-018-9146-7
Pandurangan, M., Enkhtaivan, G., & Kim, D.H. (2016). Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. Journal of Photochemistry and Photobiology B, 158, 206-211. DOI: https://doi.org/10.1016/j.jphotobiol.2016.03.002
Patel, P., Kansara, K., Senapati, V.A., Shanker, R., et al. (2016). Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis, 31(4), 481-490. DOI: https://doi.org/10.1093/mutage/gew014
Phaniendra, A., Jestadi, D.B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30, 11-26. DOI: https://doi.org/10.1007/s12291-014-0446-0
Qi, Z., Yin, L., Xu, Y., & Wang, F. (2018). Pegylated liposomal‑paclitaxel induces ovarian cancer cell apoptosis via TNF‑induced ERK/AKT signaling pathway. Molecular Medicine Reports, 17, 7497-7504. DOI: https://doi.org/10.3892/mmr.2018.8811
Rasmussen, J.W., Martinez, E., Louka, P., & Wingett, D.G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7(9), 1063-1077. DOI: https://doi.org/10.1517/17425247.2010.502560
Riehemann, K., Schneider, S.W., Luger, T.A., Godin, B., et al. (2009). Nanomedicine-challenge and perspectives. Angewandte Chemie International Edition, 48, 872–897. DOI: https://doi.org/10.1002/anie.200802585
Rizvi, S.A.A., & Saleh, A.M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26, 64-70. DOI: https://doi.org/10.1016/j.jsps.2017.10.012
Sabir, S., Arshad, M., & Chaudhari, S.K. (2014). Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. The Scientific World Journal, 2014, 1-9. DOI: https://doi.org/10.1155/2014/925494
Salata O. (2004). Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology, 2(1), 3. https://doi.org/10.1186/1477-3155-2-3 DOI: https://doi.org/10.1186/1477-3155-2-3
Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3, 7. DOI: https://doi.org/10.1038/s41392-017-0004-3
Sharma, H., Kumar, K., Choudhary, C., Mishra, P.K., & Vaidya, B. (2016). Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial Cells, Nanomedicine, and Biotechnology, 44, 672-679. DOI: https://doi.org/10.3109/21691401.2014.978980
Skrajnowska, D., & Bobrowska-Korczak, B. (2019). Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients, 11(10), 2273. DOI: https://doi.org/10.3390/nu11102273
Song, Y., Guan, R., Lyu, F., Kang, T., et al. (2014). In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 769, 113-118. DOI: https://doi.org/10.1016/j.mrfmmm.2014.08.001
Suk, J.S., Xu, Q., Kim, N., Hanes, J., et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Pt A), 28–51. DOI: https://doi.org/10.1016/j.addr.2015.09.012
Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M.M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160(1), 1-40. DOI: https://doi.org/10.1016/j.cbi.2005.12.009
Verma, N., & Kumar, N. (2019). Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomaterials Science & Engineering, 5(3), 1170-1188. DOI: https://doi.org/10.1021/acsbiomaterials.8b01092
Vinardell, M.P., &Mitjans, M. (2015). Antitumor activities of metal oxide nanoparticles. Nanomaterials(Basel, Switzerland), 5, 1004-1021. DOI: https://doi.org/10.3390/nano5021004
Wahab, R., Siddiqui, M.A., Saquib, Q., Dwivedi, S., et al. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 117, 267-276. DOI: https://doi.org/10.1016/j.colsurfb.2014.02.038
Wan, X., Song, Y., Song, N., Li, J., et al. (2016). The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging. Carbohydrate Research, 419, 33-40. DOI: https://doi.org/10.1016/j.carres.2015.11.003
Wang, C., Hu, X., Gao, Y., & Ji, Y. (2015). ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. BioMed Research International, 2015, 1-10. DOI: https://doi.org/10.1155/2015/423287
Wang, J., Lee, J.S., Kim, D., & Zhu, L. (2017). Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Applied Materials & Interfaces,9, 39971-39984. DOI: https://doi.org/10.1021/acsami.7b11219
Wu, Y., Zhang, W., Li, J., & Zhang, Y. (2013). Optical imaging of tumor microenvironment. American journal of nuclear medicine and molecular imaging, 3(1), 1–15.
Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., et al. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A Review. Frontiers in Chemistry, 8, 341. DOI: https://doi.org/10.3389/fchem.2020.00341
Zare, M., Namratha, K., Thakur, M.S., & Byrappa, K. (2019). Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Materials Research Bulletin, 109, 49-59. DOI: https://doi.org/10.1016/j.materresbull.2018.09.025
Zhang, Y., Li, M., Gao, X., Chen. Y., & Liu, T. (2019). Nanotechnology in cancer diagnosis: progress, challenges and opportunities. Journal of Hematology & Oncology, 12, 137. DOI: https://doi.org/10.1186/s13045-019-0833-3
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.