Effect of Monosodium Glutamate on the Digestibility of Different Nutrients Using Standardized Static In vitro Digestion Model

Authors

DOI:

https://doi.org/10.18006/2022.10(5).1033.1043

Keywords:

Monosodium glutamate, Food additives, Cytotoxicity, Antioxidant activity, Protein digestibility, Standardized in vitro static digestion model

Abstract

Monosodium glutamate (MSG) is a flavor enhancer and food additive with a unique umami taste. Due to its widespread use in humans, this study focused on the cytotoxicity, anti-diabetic effect, and interaction with protein digestion by performing a standardized static in vitro digestion model and lipid digestion by estimating free fatty acids released from 0.5 g of olive oil during intestinal lipolysis. The study showed that monosodium glutamate has an apparent cytotoxic effect on the Caco-2 cell line in a dose-dependent manner. MSG glutamate also showed low inhibitory activity on alpha-glucosidase enzyme even at high concentrations (16.3 % at 1800 ppm). By performing simulated in vitro digestion to study the interaction between MSG and protein digestion, followed by MTT study, total protein determination, and pH drop method, all results concluded that MSG affected proteolysis. Finally, the impact of MSG on lipolysis was studied through a free fatty acid release test. The results of the study demonstrated that MSG harmed fat digestibility in a concentration-dependent manner. As a result, it is essential to conduct further studies, especially in vivo studies, to determine the potential negative effects of MSG on human health.

References

Abdel Moneim, W. M., Yassa, H. A., Makboul, R. A., & Mohamed, N. A. (2018). Monosodium glutamate affects cognitive functions in male albino rats. Egyptian Journal of Forensic Sciences, 8(1), 1-10. DOI: https://doi.org/10.1186/s41935-018-0038-x

Ali, M. M., Bawari, M., Misra, U., & Babu, G. (2000). Locomotor and learning deficits in adult rats exposed to monosodium-L-glutamate during early life. Neuroscience letters, 284(1-2), 57-60. DOI: https://doi.org/10.1016/S0304-3940(00)00958-7

Appaiah, K. M. (2010). Monosodium glutamate in foods and its biological effects. In C. E. Boisrobert, A. Stjepanovic, S. Oh, H.L.M. Lelieveld (Eds.), Ensuring Global Food Safety (pp. 217-226): Elsevier. DOI: https://doi.org/10.1016/B978-0-12-374845-4.00013-8

Araujo, T. R., Freitas, I. N., Vettorazzi, J. F., Batista, T. M., et al. (2017). Benefits of L-alanine or L-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity. European journal of nutrition, 56(6), 2069-2080. DOI: https://doi.org/10.1007/s00394-016-1245-6

Arnao, M. B. (2000). Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science & Technology, 11(11), 419-421. DOI: https://doi.org/10.1016/S0924-2244(01)00027-9

Ataseven, N., Yüzbaşıoğlu, D., Keskin, A. Ç., & Ünal, F. (2016). Genotoxicity of monosodium glutamate. Food and chemical toxicology, 91, 8-18. DOI: https://doi.org/10.1016/j.fct.2016.02.021

Bodnár, I., Göõz, P., Okamura, H., Tóth, B. E., Vecsernyé, M., Halász, B., & Nagy, G. M. (2001). Effect of neonatal treatment with monosodium glutamate on dopaminergic and L-DOPA-ergic neurons of the medial basal hypothalamus and on prolactin and MSH secretion of rats. Brain research bulletin, 55(6), 767-774. DOI: https://doi.org/10.1016/S0361-9230(01)00584-6

Boly, R., Lamkami, T., Lompo, M., Dubois, J., & Guissou, I. (2016). DPPH free radical scavenging activity of two extracts from Agelanthus dodoneifolius (Loranthaceae) leaves. International Journal of Toxicological and Pharmacological Research, 8(1), 29-34.

Chakraborty, S. P. (2019). Patho-physiological and toxicological aspects of monosodium glutamate. Toxicology mechanisms and methods, 29(6), 389-396. DOI: https://doi.org/10.1080/15376516.2018.1528649

Dolnikoff, M., Martin-Hidalgo, A., Machado, U., Lima, F., & Herrera, E. (2001). Decreased lipolysis and enhanced glycerol and glucose utilization by adipose tissue prior to development of obesity in monosodium glutamate (MSG) treated-rats. International journal of obesity, 25(3), 426-433. DOI: https://doi.org/10.1038/sj.ijo.0801517

Elshafey, M., Eladl, M. A., El‐Sherbiny, M., Atef, H., & El Morsi, D. A. (2017). Hepatotoxicity of monoglutamate sodium: Oxidative stress and histopathlogical study. The FASEB Journal, 31, lb31-lb31.

Elya, B., Basah, K., Mun'im, A., Yuliastuti, W., Bangun, A., & Septiana, E. K. (2012). Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of biomedicine & biotechnology, 2012, 281078. https://doi.org/10.1155/2012/281078. DOI: https://doi.org/10.1155/2012/281078

Farombi, E., & Onyema, O. (2006). Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human & experimental toxicology, 25(5), 251-259. DOI: https://doi.org/10.1191/0960327106ht621oa

Food, U., & Administration, D. (2012). Questions and Answers on Monosodium glutamate (MSG). US Department of Health and Human Services Nov, 19. Retrived from https://www.fda.gov/food/ food-additives-petitions/questions-and-answers-monosodium-glutamate-msg.

Göbel, C., Tronnier, V., & Münte, T. (2017). Brain stimulation in obesity. International journal of obesity, 41(12), 1721-1727. DOI: https://doi.org/10.1038/ijo.2017.150

Hajihasani, M. M., Soheili, V., Zirak, M. R., Sahebkar, A., & Shakeri, A. (2020). Natural products as safeguards against monosodium glutamate-induced toxicity. Iranian Journal of Basic Medical Sciences, 23(4), 416.

He, K., Du, S., Xun, P., Sharma, S., Wang, H., Zhai, F., & Popkin, B. (2011). Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). The American Journal of Clinical Nutrition, 93(6), 1328-1336. DOI: https://doi.org/10.3945/ajcn.110.008870

Henry-Unaeze, H. N. (2017). Update on food safety of monosodium l-glutamate (MSG). Pathophysiology, 24(4), 243-249. DOI: https://doi.org/10.1016/j.pathophys.2017.08.001

Hsu, H.W., Vavak, D.L., Saterlee, L.D., Miller, G.A. (1977). Multienzyme technique for estimating protein digestibility. Journal of Food Science, 42(5), 1269-1273. DOI: https://doi.org/10.1111/j.1365-2621.1977.tb14476.x

Ismail, N.H. (2012). Assesment of DNA damage in testes from young Wistar male rat treated with monosodium glutamate. Life Science Journal, 9, 930 939.

Ji, C., Shin, J.A., Hong, S. T., & Lee, K.T. (2019). In vitro study for lipolysis of soybean oil, pomegranate oil, and their blended and interesterified oils under a pH-stat model and a simulated model of small intestinal digestion. Nutrients, 11(3), 678. DOI: https://doi.org/10.3390/nu11030678

Kazmi, Z., Fatima, I., Perveen, S., & Malik, S. S. (2017). Monosodium glutamate: Review on clinical reports. International Journal of food properties, 20(sup2), 1807-1815. DOI: https://doi.org/10.1080/10942912.2017.1295260

Kohan, A. B., Yang, Q., Xu, M., Lee, D., & Tso, P. (2016). Monosodium glutamate inhibits the lymphatic transport of lipids in the rat. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311(4), G648-G654. DOI: https://doi.org/10.1152/ajpgi.00342.2014

Kruger, N. J. (2009). The Bradford Method For Protein Quantitation. In: J.M. Walker (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_4 DOI: https://doi.org/10.1007/978-1-59745-198-7_4

Kurihara, K. (2015). Umami the fifth basic taste: history of studies on receptor mechanisms and role as a food flavor. BioMed Research International, 2015. DOI: https://doi.org/10.1155/2015/189402

LAEMMLI, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685. DOI: https://doi.org/10.1038/227680a0

Li, Y., Hu, M., & McClements, D. J. (2011). Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food chemistry, 126(2), 498-505. DOI: https://doi.org/10.1016/j.foodchem.2010.11.027

Li, Y., & McClements, D. J. (2010). New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. Journal of agricultural and food chemistry, 58(13), 8085-8092. DOI: https://doi.org/10.1021/jf101325m

Mele, N. G., Arrieta Gamarra, D. I., Mendoza Zélis, P., Sánchez, F. H., & Pasquevich, G. A. (2022). Evaluation of Nanoparticle-size distribution with Mössbauer Effect spectroscopy. Hyperfine Interactions, 243(1), 1-13. DOI: https://doi.org/10.1007/s10751-022-01801-6

Minekus, M., Alminger, M., Alvito, P., Ballance, S., et al. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124. DOI: https://doi.org/10.1039/C3FO60702J

Niaz, K., Zaplatic, E., & Spoor, J. (2018). Extensive use of monosodium glutamate: A threat to public health? EXCLI journal, 17, 273.

Onyema, O. O., Farombi, E. O., Emerole, G. O., Ukoha, A. I., & Onyeze, G. O. (2006). Effect of vitamin E on monosodium glutamate induced hepatotoxicity and oxidative stress in rats. Indian journal of Biochemistry and Biophysics, 43, 20-24.

Perelló, M., Gaillard, R. C., Chisari, A., & Spinedi, E. (2003). Adrenal enucleation in MSG-damaged hyperleptinemic male rats transiently restores adrenal sensitivity to leptin. Neuroendocrinology, 78(3), 176-184. DOI: https://doi.org/10.1159/000072799

Qaisar, M. N., Chaudhary, B. A., Sajid, M. U., & Hussain, N. (2014). Evaluation of α-glucosidase inhibitory activity of dichloromethane and methanol extracts of Croton bonplandianum Baill. Tropical Journal of Pharmaceutical Research, 13(11), 1833-1836. DOI: https://doi.org/10.4314/tjpr.v13i11.9

Rogers, M. D. (2016). Monosodium glutamate is not likely to be genotoxic. Food and chemical toxicology, 94, 260-261. DOI: https://doi.org/10.1016/j.fct.2016.05.001

Rosa, S. G., Quines, C. B., da Rocha, J. T., Bortolatto, C. F., Duarte, T., & Nogueira, C. W. (2015). Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. European journal of pharmacology, 758, 64-71. DOI: https://doi.org/10.1016/j.ejphar.2015.03.060

Saeidnia, S., & Abdollahi, M. (2013). Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicology and applied pharmacology, 273(3), 442-455. DOI: https://doi.org/10.1016/j.taap.2013.09.031

Santos, J. S., Brizola, V. R. A., & Granato, D. (2017). High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food chemistry, 214, 515-522. DOI: https://doi.org/10.1016/j.foodchem.2016.07.091

Shannon, M., Wilson, J., Xie, Y., & Connolly, L. (2019). In vitro bioassay investigations of suspected obesogen monosodium glutamate at the level of nuclear receptor binding and steroidogenesis. Toxicology letters, 301, 11-16. DOI: https://doi.org/10.1016/j.toxlet.2018.10.021

Shibata, M., Tanaka, H., Kawabe, M., Sano, M., Hagiwara, A., & Shirai, T. (1995). Lack of carcinogenicity of monosodium L-glutamate in Fischer 344 rats. Food and chemical toxicology, 33(5), 383-391. DOI: https://doi.org/10.1016/0278-6915(94)00152-E

Stańska, K., & Krzeski, A. (2016). The umami taste: from discovery to clinical use. Otolaryngol Pol, 70(4), 10-15. DOI: https://doi.org/10.5604/00306657.1199991

Van Meerloo, J., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: the MTT assay. Methods in molecular biology (Clifton, N.J.),

, 237–245. https://doi.org/10.1007/978-1-61779-080-5_20 DOI: https://doi.org/10.1007/978-1-61779-080-5_20

Wang, J., Chi, Y., Cheng, Y., & Zhao, Y. (2018). Physicochemical properties, in vitro digestibility and antioxidant activity of dry-heated egg white protein. Food chemistry, 246, 18-25. DOI: https://doi.org/10.1016/j.foodchem.2017.10.128

Wu, L., Zhang, C., Long, Y., Chen, Q., Zhang, W., & Liu, G. (2021). Food additives: From functions to analytical methods. Critical reviews in food science and nutrition, 1–21. Advance online publication. https://doi.org/10.1080/10408398.2021.1929823 DOI: https://doi.org/10.1080/10408398.2021.1929823

Zanfirescu, A., Ungurianu, A., Tsatsakis, A. M., Nițulescu, G. M., et al. (2019). A review of the alleged health hazards of monosodium glutamate. Comprehensive reviews in food science and food safety, 18(4), 1111-1134. DOI: https://doi.org/10.1111/1541-4337.12448

Downloads

Published

2022-10-31

How to Cite

Alsedfy, M. Y., Said, A. H., Ebnalwaled, A., & Moustafa, M. (2022). Effect of Monosodium Glutamate on the Digestibility of Different Nutrients Using Standardized Static In vitro Digestion Model. Journal of Experimental Biology and Agricultural Sciences, 10(5), 1033–1043. https://doi.org/10.18006/2022.10(5).1033.1043

Issue

Section

RESEARCH ARTICLES

Categories